http://dx.doi.org/10.4322/sc.2016.013
A razão de modulação em cromatografia gasosa bidimensional abrangente: uma revisão de aspectos fundamentais e práticos

Marriott, Philip John; Mühlen, Carin von

Palavras-chave: razão de modulação, cromatografia gasosa bidimensional abrangente, espectrometria de massas quadrupolar, quantificação.Resumo:  Esse artigo apresenta uma discussão sobre as implicações da razão de modulação (MR ) na cromatografia gasosa bidimensional abrangente (GC×GC). Os conceitos foram discutidos em formato tutorial, que é essencialmente uma revisão da literatura. A MR é definida como a razão entre a largura do pico eluído da coluna da primeira dimensão (1 D) e o período de modulação usado na operação do GC×GC em número adimensional. Como demonstrado aqui, existem muito parâmetros de GC×GC que são dependentes ou podem ser interpretados por considerações relativas ao valor da MR . Dentre eles, destacam-se o aumento da amplitude do pico, o número de modulações por pico observada, a detectabilidade de cada um desses picos, o efeito do formato do pico sobre a distribuição dos picos modulados e como o tempo de retenção dos picos monodimensionais pode ser derivada dessa distribuição. Também serão discutidas considerações sobre como as dimensões físicas e a fase de recobrimento da segunda coluna (2 D) usada em GC×GC (isso controla o tempo de retenção total dos picos na coluna 2 D) podem ser interpretadas com base na MR, , e como esse parâmetro pode auxiliar na interpretação da separação de isômeros.


Referências Bibliográficas

[1] Liu Z, Phillips JB. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci. 1991;29(6):227-31.
[2] Chin S-T, Marriott PJ. Multidimensional gas chromatography beyond simple volatiles separation. Chem Commun. 2014;50:8819- 33.
[3] Meinert C, Meierhenrich UJ. A new dimension in separation science: Comprehensive two-dimensional gas chromatography. Angew Chem Int Ed. 2012;51:10460-70.
[4] Schoenmakers P, Marriott P, Beens J. Nomenclature and conventions in comprehensive multidimensional chromatography. LCGC Europe. 2003;June:1-4.
[5] Marriott PJ, Wu Z, Schoenmakers P. Nomenclature and conventions in comprehensive multidimensional chromatography – an update. LC-GC Europe. 2012;25:266-75.
[6] Khummueng W, Harynuk J, Marriott PJ. Modulation ratio in comprehensive two-dimensional gas chromatography. Anal Chem. 2006;78(13):4578-87.
[7] Khummueng W, Marriott PJ. The nomenclature of comprehensive two-dimensional gas chromatography: Defining the modulation ratio (MR ). LC-GC Europe. 2009;22(1):38-43.
[8] Harynuk JJ, Kwong AH, Marriott PJ. Modulation-induced error in comprehensive two-dimensional gas chromatographic separations. J Chromatogr A. 2008;1200:17-27.
[9] Amador-Munoz O, Marriott PJ. Quantification in comprehensive two-dimensional gas chromatography and a model of quantification based on selected summed modulated peaks. J Chromatogr A. 2008;1184(1-2):323-40.
[10] Harynuk J, Gorecki T, Zeeuw Jd. Overloading of the second-dimension column in comprehensive two-dimensional gas chromatography. J Chromatogr A. 2005;1071(1-2):21-7.
[11] Ong R, Marriott P. A review of basic concepts in comprehensive two-dimensional gas chromatography. J Chromatogr Sci. 2002;40:276-91.
[12] Shellie RA, Xie L-L, Marriott PJ. Retention time reproducibility in comprehensive two-dimensional gas chromatography using cryogenic modulation. An intralaboratory study. J Chromatogr A. 2002;968(1-2):161-70.
[13] Adcock JL, Adams M, Mitrevski BS, Marriott PJ. Peak modeling approach to accurate assignment of first-dimension retention times in comprehensive two-dimensional chromatography. Anal Chem. 2009;81(16):6797-804.
[14] Marriott PJ, Kinghorn RM. Longitudinally modulated cryogenic system. A generally applicable approach to solute trapping and mobilization in gas chromatography. Anal Chem. 1997;69(13):2582-8.
[15] Kinghorn RM, Marriott PJ. Comprehensive two-dimensional gas chromatography using a modulating cryogenic trap. J High Resol Chromatogr. 1998;21(11):620-2.
[16] Marriott PJ, Chin S-T, Maikhunthod B, Schmarr H-G, Bieri S. Multidimensional gas chromatography. TrAC Trends Anal Chem. 2012;34:1-21.
[17] Lee AL, Bartle KD, Lewis AC. A model of peak amplitude enhancement in orthogonal two-dimensional gas chromatography. Anal Chem. 2001;73(6):1330-5.
[18] Mitrevski BS, Wilairat P, Marriott PJ. Comprehensive two-dimensional gas chromatography improves separation and identification of anabolic agents in doping control. J Chromatogr A. 2010;1217(1):127-35.
[19] Marriott PJ, Massil T, Hugel H. Molecular structure retention relationships in comprehensive two-dimensional gas chromatography. J Sep Sci. 2004;27:1273-84.
[20] Mayadunne R, Nguyen T-T, Marriott PJ. Amino acid analysis by using comprehensive two-dimensional gas chromatography. Anal Bioanal Chem. 2005;382(3):836-47.
[21] Yang SO, Choi HK, Marriott PJ. unpublished observations 2009.
[22] Frysinger GS, Gaines RB. Comprehensive two-dimensional gas chromatography with mass spectrometic detection (GC x GC/ MS) applied to the analysis of petroleum. J High Resol Chromatogr. 1999;22(5):251-5.
[23] Song SM, Marriott P, Wynne P. Comprehensive two-dimensional gas chromatography-quadrupole mass spectrometric analysis of drugs. J Chromatogr A. 2004;1058(1-2):223-32.
[24] Shellie RA, Marriott PJ, Huie CW. Comprehensive two-dimensional gas chromatography (GC × GC) and GC × GC-quadrupole MS analysis of Asian and American ginseng. J Sep Sci. 2003;26(12-13):1185-92.
[25] Purcaro G, Tranchida PQ, Ragonese C, Conte L, Dugo P, Dugo G, et al. Evaluation of a rapid-scanning quadrupole mass spectrometer in an apolar x ionic-liquid comprehensive two-dimensional gas chromatography system. Anal Chem. 2010;82(20):8583-90.
[26] Weinert CH, Egert B, Kulling SE. On the applicability of comprehensive two-dimensional gas chromatography combined with a fast-scanning quadrupole mass spectrometer for untargeted large-scale metabolomics. J Chromatogr A. 2015;1405:156-67.
[27] Franchina FA, Machado ME, Tranchida PQ, Zini CA, Caramão EB, Mondello L. Determination of aromatic sulphur compounds in heavy gas oil by using (low-)flow modulated comprehensive two-dimensional gas chromatography–triple quadrupole mass spectrometry. J Chromatogr A. 2015;1387:86-94.
[28] Amador-Muñoz O, Villalobos-Pietrini R, Aragón-Piña A, Tran TC, Morrison P, Marriott PJ. Quantification of polycyclic aromatic hydrocarbons based on comprehensive two-dimensional gas chromatography-isotope dilution mass spectrometry. J Chromatogr A. 2008;1201(2):161-8.
[29] Wong YF, West RN, Chin S-T, Marriott PJ. Evaluation of fast enantioselective multidimensional gas chromatography methods for monoterpenic compounds: Authenticity control of Australian tea tree oil. J Chromatogr A. 2015;1406:307-15.
[30] Klee MS, Cochran J, Merrick M, Blumberg LM. Evaluation of conditions of comprehensive two-dimensional gas chromatography that yield a near-theoretical maximum in peak capacity gain. J Chromatogr A. 2015;1383:151-9.
[31] Liu X, Mitrevski B, Li J, Li D, Marriott PJ. Comprehensive two-dimensional gas chromatography with flame photometric detection applied on organophosphorus pesticides in food matrices. Microchem J. 2013;111:25-31.
[32] Chin ST, Wu ZY, Morrison PD, Marriott PJ. Observations on comprehensive two dimensional gas chromatography coupled with flame photometric detection for sulfur- and phosphorus-containing compounds. Anal Meth. 2010;2(3):243-53.
[33] Engel E, Ratel J, Blinet P, Chin S-T, Rose G, Marriott PJ. Benchmarking of candidate detectors for multiresidue analysis of pesticides by comprehensive two-dimensional gas chromatography. J Chromatogr A. 2013;1311:140-8.
[34] Krupcík J, Májek P, Gorovenko R, Blasko J, Kubinec R, Sandra P. Considerations on the determination of the limit of detection and the limit of quantification in one-dimensional and comprehensive two-dimensional gas chromatography. J Chromatogr A. 2015;1396:117-30.