http://dx.doi.org/10.5935/sc.2018.003

 

UHPLC capilar: aspectos teóricos e práticos

Marcio David Bocelli MD; Borsatto JVB; Santos Neto AJ

Palavras-chave: UHPLC capilar, colunas empacotadas, aquecimento friccional, efeito de parede, colunas capilares.

Resumo: A UHPLC capilar é uma ferramenta bastante interessante. Ela une as principais características da UHPLC e da cromatografia capilar, como capacidade de trabalhar com pequenas quantidades de amostra e analises rápidas e eficientes. Embora esta técnica apresente características interessantes, não possui um grande número de publicações, estando restrita basicamente a separações cromatográficas na área de proteômica. Essa revisão apresenta os principais aspectos práticos e teóricos sobre UHPLC capilar. Fundamentos relevantes como efeito do diâmetro da partícula, efeito do diâmetro interno da coluna, efeito da pressão, aquecimento ficcional e efeito da parede são abordados de forma sucinta. São apresentadas também abordagens históricas sobre a evolução da UHPLC e da miniaturização de colunas. As principais características da instrumentação também são abordadas.


Referências Bibliográficas

[1] Marins Coutinho LF, Domingues Nazario CE, Monteiro AM, Lanças FM. Novel devices for solvent delivery and temperature
programming designed for capillary liquid chromatography. Journal of Separation Science 37 (2014) 1903-10.
[2] Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrometry Reviews 28 (2009) 870-97.
[3] Majors RE. Techniques for liquid chromatographic columns packed with small porous particles. Analytical Chemistry 45
(1973)755-62.
[4] Horvath CG, Preiss BA, Lipsky SR. Fast liquid chromatography: an investigation of operating parameters and the separation of
nucleotides on pellicular ion exchangers Analytical Chemistry 39 (1967) 1422-8.
[5] Wahab MF, Patel DC, Wimalasinghe RM, Armstrong DW. Fundamental and practical insights on the packing of modern highefficiency analytical and capillary columns. Analytical Chemistry 89 (2017) 8177-91.
[6] Treadway JW, Wyndham KD, Jorgenson JW. Highly efficient capillary columns packed with superficially porous particles via
sequential column packing. Journal of Chromatography A 1422 (2015) 345-9.
[7] González-Ruiz V, Olives AI, Martín MA. Core-shell particles lead the way to renewing high-performance liquid chromatography.
Trends in Analytical Chemistry 64 (2015) 17-28.
[8] Nguyen DT-T, Guillarme D, Rudaz S, Veuthey J-L. Fast analysis in liquid chromatography using small particle size and high
pressure. Journal of Separation Science 29 (2006) 1836-48.
[9] Majors RE. Sub-2- μm porous particles — Where do we go from here?. LC GC North America 23 (2005) 1248-55.
[10] Mazzeo JR, D.Neue U, Kele M, Plumb RS. Advancing LC performance with smaller particles and higher pressure. Analytical
Chemistry 77 (2005) 460 A-467 A.
[11] Kirkland JJ, Schuster SA, Johnson WL, Boyes BE. Fused-core particle technology in high-performance liquid chromatography:
An overview. J Pharm Anal. 2013;3(5):303-12.
[12] Desmet G, Eeltink S. Fundamentals for LC miniaturization. Analytical Chemistry 85 (2013) 543-56.
[13] Bartle KD, Myers P. History of gas chromatography. Trends Analythical Chemistry 21 (2002) 547-57.
[14] Lanças FM. Vantagens e limitações da miniaturização em cromatografia líquida. Scientia Chromatographica 1 (2009) 51-60.
[15] Coutinho LFM, Lanças FM. Cromatografia líquida capilar 1. Principais características da técnica. Scientia Chromatographica 3
(2011) 115-30.
[16] Saito Y, Jinno K, Greibrokk T. Capillary columns in liquid chromatography: between conventional columns and microchips.
Journal of Separation Science 27 (2004) 1379-90.
[17] Kennedy RT, Jorgenson JW. Preparation and evaluation of packed capillary liquid chromatography columns with inner diameters
from 20 to 50 um. Analytical Chemistry 61 (1989) 1128-35.
[18] Vanderlinden K, Broeckhoven K, Vanderheyden Y, Desmet G. Effect of pre- and post-column band broadening on the performance
of high-speed chromatography columns under isocratic and gradient conditions. Journal of Chromatography A 1442 (2016).
[19] Nazario CED, Silva MR, Franco MS, Lanças FM. Evolution in miniaturized column liquid chromatography instrumentation and
applications: An overview. J Chromatogr A. 2015;1421:18–37.
[20] Jorgenson JW. Capillary liquid chromatography at ultrahigh pressures. Annual Review of Analytical Chemistry 3 (2010) 129-50.
[21] Hsieh S, Jorgenson JW. Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters
from 12 to 33 microns. Analytical Chemistry 68 (1996) 1212-7.
[22] Hirata Y, Jinno K. High resolution liquid chromatography with a packed micro glass capillary column. Journal of High Resolution
Chromatography 6 (1983) 196-9.
[23] Patel KD, Jerkovich AD, Link JC, Jorgenson JW. In-depth characterization of slurry packed capillary columns with 1.0-μm
nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography. Analytical Chemistry 76 (2004)
5777-86.
[24] Fallas MM, Neue UD, Hadley MR, McCalley D V. Investigation of the effect of pressure on retention of small molecules using
reversed-phase ultra-high-pressure liquid chromatography. Journal of Chromatography A 1209 (2008) 195-205.
[25] Fallas MM, Neue UD, Hadley MR, McCalley D V. Further investigations of the effect of pressure on retention in ultra-highpressure liquid chromatography. Journal of Chromatography A 1217 (2010) 276-84.
[26] Gritti F, Guiochon G. Optimization of the thermal environment of columns packed with very fine particles. Journal of
Chromatography A 1216 (2009) 1353-62.
[27] Gritti F, Martin M, Guiochon G. Influence of viscous friction heating on the efficiency of columns operated under very high
pressures. Analytical Chemistry 81 (2009) 3365-84.
[28] Bruns S, Stoeckel D, Smarsly BM, Tallarek U. Influence of particle properties on the wall region in packed capillaries. Journal
of Chromatography A 1268 (2012) 53-63.
[29] Bruns S, Franklin EG, Grinias JP, Godinho JM, Jorgenson JW, Tallarek U. Slurry concentration effects on the bed morphology
and separation efficiency of capillaries packed with sub-2μm particles. Journal of Chromatography A 1318 (2013) 189-97.