http://dx.doi.org/10.5935/sc.2018.009

Substrate materials used in microchip gas chromatography

Lee ML et al.

Palavras-chave: Gas Chromatography, Microship, Microfabrication, Substrate, Miniaturized GC.

Abstract: Although silicon-glass hybrid systems have been most commonly used to fabricate microchip columns for miniaturized gas chromatography (GC), a variety of other materials have been investigated. These include all-glass microchips, various polymers alone or in combination, and different metal substrates. This review gives an overview of the different substrates used in making microchip GC columns, and provides a discussion of their advantages and disadvantages for use in microchip fabrication and separation performance.


Referências Bibliográficas

[1] E. Lussac, R. Barattin, P. Cardinael, V. Agasse, Review on Micro-Gas Analyzer Systems: Feasibility, Separations and Applications, Crit Rev Anal Chem 46(6) (2016) 455-468.
[2] S.C. Terry, J.H. Jerman, J.B. Angell, Gas-Chromatographic Air Analyzer Fabricated on a Silicon-Wafer, IEEETrans Electron Dev 26(12) (1979) 1880-1886.
[3] A. Ghosh, C.R. Vilorio, A.R. Hawkins, M.L. Lee, Microchip Gas Chromatography Columns, Interfacing and Performance, Talanta 188 (2018) 463-492.
[4] R.D. Dandeneau, E.H. Zerenner, An investigation of Glasses for Capillary Chromatography, J High Res Chrom 2(6) (1979) 351-356.
[5] H.S. Noh, P.J. Hesketh, G.C. Frye-Mason, Parylene Gas Chromatographic Column for Rapid Thermal Cycling, J Microelectromech Sys. 11(6) (2002) 718-725.
[6] A. Malainou, M.E. Vlachopoulou, R. Triantafyllopoulou, A. Tserepi, S. Chatzandroulis, The Fabrication of a Microcolumn for Gas Separation Using Poly(dimethylsiloxane) as the Structural and Functional Material, J Micromech Microeng 18(10) (2008), 1-6.
[7] J.M. Rankin, K.S. Suslick, The Development of a Disposable Gas Chromatography Microcolumn, Chem Commun 51(43) (2015) 8920-8923.
[8] H.Y. Cynthia G. Briscoe, Grodzinski, Rong-Fong Huang, Jeremy W. Burdon, Multilayered Ceramic Micro-Gas Chromatograph and Method for Making the Same, US Patent US 6527890 B1,(2003).
[9] E. Darko, Charecterization of Novel Materials as Platforms for Performing Microflidic Gas Chromatography, University of Calgary, Thesis, (2013).
[10] E. Darko, K.B. Thurbide, G.C. Gerhardt, J. Michienzi, Characterization of Low-Temperature Cofired Ceramic Tiles as Platforms for Gas Chromatographic Separations, Anal Chem 85(11) (2013) 5376-5381.
[11] A. Bhushan, D. Yemane, J. Goettert, E.B. Overton, M.C. Murphy, Fabrication and Testing of High Aspect Ratio Metal Micro-Gas Chromatograph Columns, ASME 2004 Int Mech Eng Cong and Expo, Am Soc of Mech Engineers, (2004), 321-324.
[12] A. Bhushan, D. Yemane, E.B. Overton, J. Goettert, M.C. Murphy, Fabrication and Preliminary Results for LiGA Fabricated Nickel Micro Gas Chromatograph Columns, J Microelectromech Sys 16(2) (2007) 383-393.
[13] A. Bhushan, D. Yemane, D. Trudell, E.B. Overton, J. Goettert, Fabrication of Micro-Gas Chromatograph Columns for Fast Chromatography, Microsyst Technol 13(3-4) (2007) 361-368.
[14] T. Iwaya, S. Akao, T. Sakamoto, T. Tsuji, N. Nakaso, K. Yamanaka, Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph, Jpn J Appl Phys 51(7) (2012), 07GC24-1-07GC246.
[15] A. Ghosh A. R. Foster, C.R. Vilorio, L. T. Tolley, A. R. Hawkins, B.D. Ivesron, H.D. Tolley, M. L. Lee, Effect of Thermal Control in Microchip Thermal Gradient Gas Chromatography, Oral Presentation, Pittcon, (2018).
[16] R.P. Raut, K.B. Thurbide, Characterization of Titanium Tiles as Novel Platforms for Micro-Flame Ionization Detection in Miniature Gas Chromatography, Chromatographia 80(5) (2017) 805-812.
[17] J. Halliday, A.C. Lewis, J.F. Hamilton, C. Rhodes, K.D. Bartle, P. Homewood, R.J.P. Grenfell, B. Goody, A. Harling, P. Brewer, G. Vargha, M.J.T. Milton, Lab-on-a-Chip GC for Environmental Research, LC GC Eur 23(10) (2010) 514-523.
[18] Y.T. Qin, Y.B. Gianchandani, iGC1: An Integrated Fluidic System for Gas Chromatography Including Knudsen Pump, Preconcentrator, Column, and Detector Microfabricated by a Three-Mask Process, J Microelectromech Sys 23(4) (2014) 980-990.
[19] V.N. Sidelnikov, O.A. Nikolaeva, I.A. Platonov, V.N. Parmon, Gas chromatography of the Future: Columns Whose Time has Come, Russ Chem Rev 85(10) (2016) 1033-1055.
[20] A. Ghosh, J.E. Johnson, J.G. Nuss, B.A. Stark, A.R. Hawkins, L.T. Tolley, B.D. Iverson, H.D. Tolley, M.L. Lee, Extending the Upper Temperature Range of Gas Chromatography with All-Silicon Microchip Columns Using a Heater/Clamp Assembly, J Chromatogr A 1517 (2017) 134-141.
[21] A.Z. Wang, S. Hynynen, A.R. Hawkins, S.E. Tolley, H.D. Tolley, M.L. Lee, Axial Thermal Gradients in Microchip Gas Chromatography, J Chromatogr A 1374 (2014) 216-223.
[22] A. de Mello, FOCUS On-chip Chromatography: The Last Twenty Years, Lab Chip 2(3) (2002) 48N-54N.
[23] S.C. Terry, A Gas Chromatography System Fabricated on a Sillicon Wafer Using Integrated Circuit Technology, Stanford Univesity, Dissertation,(1975).
[24] L.Csepregi, Micromechanics: A silicon Microfabrication Technology, Microelec Eng 3(1-4) (1985) 221-234.
[25] C. Vollrath, P.S. Dittrich, MIcrofluidics:Basic Concepts and Microchip Fabrication, N. Bontoux, L. Dauphinot, M-C. Potier (Ed.), Unravelling Single Cell Genomics: Micro and Nanotools, Royal Soc of Chem (2010), 11-149.
[26] C. Iliescu, H. Taylor, M. Avram, J.M. Miao, S. Franssila, A Practical Guide for the Fabrication of Microfluidic Devices Using Glass and Silicon, Biomicrofluidics 6(1) (2012), 016505-1-016505-16.
[27] K.E. Bean, Anisotropic Etching of Silicon, IEEE Trans Electron Dev 25(10) (1978) 1185-1193.
[28] S. Dutta, M. Imran, P. Kumar, R. Pal, P. Datta, R. Chatterjee, Comparison of Etch Characteristics of KOH, TMAH and EDP for Bulk Micromachining of Silicon (110), Microsyst Technol 17(10-11) (2011) 1621-1628.
[29] H. Lu, H. Zhang, M.L. Jin, T. He, G.F. Zhou, L.L. Shui, Two-Layer Microstructures Fabricated by One-Step Anisotropic Wet Etching of Si in KOH Solution, Micromachines-Basel 7(19) (2016), 1-7.
[30] A.A. Ayon, K.S. Chen, K.A. Lohner, S.M. Spearing, H.H. Sawin, M.A. Schmidt, Deep Reactive Ion Etching of Silicon, Mater Res Soc Symp P 546 (1999) 51-61.
[31] K.B.Albaugh, D.H. Rasmussen, Mechanisms of Anodic Bonding of Silicon to Pyrex® Glass, IEEE Technical Digest on Solid-State Sensor and Actuator Workshop, IEEE, Hilton Head Island, SC, USA, (1988), 109-110.
[32] A.C.Lapadatu,.K. Schjølberg‐Henriksen, Anodic Bonding, P. Ramm, J Jian‐Qiang Lu, M. M. V. Taklo(Ed.), Handbook of Wafer Bond (2012), 63-80.
[33] C.C. Tripathi, S. Jain, P. Joshi, S.C. Sood, D. Kumar, Development of Low Cost Set Up for Anodic Bonding and its Characterization, Indian J Pure Ap Phy 46(10) (2008) 738-743.
[34] C.M. Yu, High performance hand-held gas chromatograph, (1998). https://www.osti.gov/biblio/304615.
[35] C.Y. Lee, C.C. Liu, S.C. Chen, C.M. Chiang, Y.H. Su, W.C. Kuo, High-performance MEMS-Based Gas Chromatography Column with Integrated Micro Heater, Microsyst Technol 17(4) (2011) 523-531.
[36] A.D. Radadia, A. Salehi-Khojin, R.I. Masel, M.A. Shannon, The Fabrication of All-Silicon Micro Gas Chromatography Columns Using Gold Diffusion Eutectic Bonding, J Micromech Microeng 20(1) (2010), 1-7.
[37] Z. Cui, Wafer Bonding, in: D. Li (Ed.), Encyclo of Microfluid and Nanofluid, Springer, Boston, MA, (2008).
[38] M. Navaei, A. Mahdavifar, J. Xu, J.D. Dimandja, G. McMurray, P.J. Hesketh, Micro-Fabrication of All Silicon 3 Meter GC Columns Using Gold Eutectic Fusion Bonding, Ecs J Solid State Sc 4(10) (2015) S3011-S3015.
[39] V. Dragoi, E. Cakmak, E. Pabo, Metal Wafer Bonding for MEMS Devices, Rom J Inf Sci Tech 13(1) (2010) 65-72.
[40] D. Gaddes, J. Westland, F.L. Dorman, S. Tadigadapa, Improved Micromachined Column Design and Fluidic Interconnects for Programmed High-Temperature Gas Chromatography Separations, J Chromatogr A 1349 (2014) 96-104.
[41] J.P. Grinias, R.T. Kennedy, Advances in and Prospects of Microchip Liquid Chromatography, Trend Anal Chem 81 (2016) 110-117.
[42] P.N. Nge, C.I. Rogers, A.T. Woolley, Advances in Microfluidic Materials, Functions, Integration, and Applications, Chem Rev 113(4) (2013) 2550-2583.
[43] K.N. Ren, J.H. Zhou, H.K. Wu, Materials for Microfluidic Chip Fabrication, Accounts Chem Res 46(11) (2013) 2396-2406.
[44] A.C. Lewis, J.F. Hamilton, C.N. Rhodes, J. Halliday, K.D. Bartle, P. Homewood, R.J.P. Grenfell, B. Goody, A.M. Harling, P. Brewer, G. Vargha, M.J.T. Milton, Microfabricated Planar Glass Gas Chromatography with Photoionization Detection, J Chromatogr A 1217(5) (2010) 768-774.
[45] R Knitter, T. R. Dietrich, Microfabrication in Ceramics and Glass, N. Kockmann (Ed.), Advanced Micro and Nanosystems, WILEY-VCH, Weinheim, (2006), 353-385.
[46] J.H. Park, N.E. Lee, J. Lee, J.S. Park, H.D. Park, Deep Dry Etching of Borosilicate Glass Using SF6 and SF6/Ar Inductively Coupled Plasmas, Microelectronic Engineering 82(2) (2005) 119-128.
[47] file:///C:/Users/Ghosh/Documents/Miniaturisation_of_Gas_Chromatography_-Equipment_-_-application-note.pdf
[48] Y.T. Qin, Y.B. Gianchandani, iGC2: An Architecture for Micro Gas Chromatographs Utilizing Integrated Bi-Directional Pumps and Multi-Stage Preconcentrators, J Micromech Microeng 24(6) (2014), 980-990.
[49] J.H. Sun, F.Y. Guan, X.F. Zhu, Z.W. Ning, T.J. Ma, J.H. Liu, T. Deng, Micro-Fabricated Packed Gas Chromatography Column Based on Laser Etching Technology, J Chromatogr A 1429 (2016) 311-316.
[50] N.V. Toan, M. Toda, T. Ono, An Investigation of Processes for Glass Micromachining, Micromachines-Basel 7(51) (2016), 1-12.
[51] M.Z. Charles S. Henry, S. M. Lunte,  M. Kim,  H. Bau  and  J. J. Santiago Ceramic Microchips for Capillary Electrophoresis–Electrochemistry, Analytical Communications 36 (1999) 305-307.
[52] K.A.Peterson, K.D.Patel, C.K.Ho, S.B.Rhode, .C.D.Nordquist, C.A.Walker, B.D.Wroblewski, M. Okandan, Novel Microsystem Applications with New Techniques in Low‐Temperature Co‐Fired Ceramics, Int J of Appl Ceramic Tech 2(5) (2005) 345-363.
[53] D.R.Adkins, P. Lewis, Folded Passage Gas Chromatography Column, Patent ApplicationUS 2011/0226040 A1, (2010).
[54] L.S. Ettre, Evolutions of Capillary Columns for Gas Chromatography, LCGC, (2001), 48-59.
[55] P.R.L.R. Wheeler, Non-Planar Microfabricated Gas Chromatography Column,  US Patent,US7273517B1 (2005).
[56] Defiant Technologies.http://www.defiant-tech.com/gasmodules.php
[57] M.L. Lee, A. Ghosh,  A.R. Foster, C.R. Vilorio, J.C. Johnson, X. Xie, L.M. Patil, L.T. Tolley, HD. Tolley, A.R. Hawkins, B.D.Iverson, Novel Column Technologies for Portable Capillary Chromatography, Oral Presentation, ISCC, GCxGC Riva, Italy, (2018).
[58] S.I. MacNaughton, S. Sonkusale, Gas Analysis System on Chip With Integrated Diverse Nanomaterial Sensor Array, IEEE Sens J 15(6) (2015) 3500-3506.
[59] S. MacNaughton, Programmable Integration of Heterogeneous Nanomaterial Arrays onto Arbitrary Substrates with Applications in Gas Sensing, ProQuest Dissertations and Theses, Tufts University, USA, (2014).