http://dx.doi.org/10.5935/sc.2019.004

Capillary electrochromatography (CEC): recent materials for capillary column preparation, applications, and future perspectives

Fumes B. H., Borsatto J. V. B., Lanças F. M.

Keywords: graphene, graphene oxide, ionic liquid, MIP, column technologies, capillary electrochromatography

Abstract: Capillary electrochromatography (CEC) is a variation of the electrophoresis technique that employs a capillary column filled with a stationary phase. Similarly, as liquid chromatography, the development of new columns started to receive attention from scientists interested in instrumentation, and some materials have been tested in open tubular (OT) and monolithic columns. Among the materials that have received particular attention in CEC column fabrication, are highlighted: graphene oxide (GO)/graphene, ionic liquids (ILs) and molecularly imprinted polymer (MIP). The present review discusses some historical aspects of CEC, column technologies, and new materials (GO/graphene, ILs, and MIP) in column preparation focusing on their synthesis. Additionally, properties and applications in pharmaceutical, proteomic, environmental, and food analysis covering the period of 2012-2020.


Referências Bibliográficas

  1. Pretorius, B.J. Hopkins, J.D. Schieke, Electro-osmosis. A new concept for high-speed liquid chromatography, J. Chromatogr. A. 99 (1974) 23–30. doi:10.1016/S0021-9673(00)90842-2.
  2. W. Jorgenson, K.D.A. Lukacs, High-resolution separations based on electrophoresis and electroosmosis, J. Chromatogr. A. 218 (1981) 209–216. doi:10.1016/S0021-9673(00)82057-9.
  3. H. Knox, I.H. Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia. 24 (1987) 135–143. doi:10.1007/BF02688476.
  4. A. Carney, M.M. Robson, K.D. Bartle, P. Myers, Investigation into the formation of bubbles in capillary electrochromatography, HRC J. High Resolut. Chromatogr. 22 (1999) 29–32. doi:10.1002/(SICI)1521-4168(19990101)22:1<29::AID-JHRC29>3.0.CO;2-U.
  5. R. Chen, M.T. Dulay, R.N. Zare, F. Svec, E. Peters, Macroporous photopolymer frits for capillary electrochromatography, Anal. Chem. 72 (2000) 1224–1227. doi:10.1021/ac9911793.
  6. Okamoto, Y. Ikawa, F. Kitagawa, K. Otsuka, Preparation of fritless capillary using avidin immobilized magnetic particles for electrochromatographic chiral separation, J. Chromatogr. A. 1143 (2007) 264–269. doi:10.1016/j.chroma.2007.01.006.
  7. Saito, K. Jinno, T. Greibrokk, Capillary columns in liquid chromatography: between conventional columns and microchips, J. Sep. Sci. 27 (2004) 1379–1390. doi:10.1002/jssc.200401902.
  8. C. Lam, E. Sanz Rodriguez, P.R. Haddad, B. Paull, Recent advances in open tubular capillary liquid chromatography, Analyst. (2019). doi:10.1039/c9an00329k.
  9. Aydoğan, Organic polymer-based monolithic capillary columns and their applications in food analysis ?, (2019) 1–18. doi:10.1002/jssc.201801051.
  10. Rozenbrand, W.P. Van Bennekom, Silica-based and organic monolithic capillary columns for LC: Recent trends in proteomics, J. Sep. Sci. 34 (2011) 1934–1944. doi:10.1002/jssc.201100294.
  11. Liu, J. Shi, G. Jiang, Application of graphene in analytical sample preparation, TrAC Trends Anal. Chem. 37 (2012) 1–11. doi:10.1016/j.trac.2012.03.011.
  12. Liu, J. Shi, L. Zeng, T. Wang, Y. Cai, G. Jiang, Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes, J. Chromatogr. A. 1218 (2011) 197–204. doi:10.1016/j.chroma.2010.11.022.
  13. Y.N. Gengler, K. Spyrou, P. Rudolf, A roadmap to high quality chemically prepared Graphene, J. Phys. D. Appl. Phys. 43 (2010). doi:10.1088/0022-3727/43/37/374015.
  14. S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339–1339. doi:10.1021/ja01539a017.
  15. D. Ho, A.J. Canestraro, J.L. Anderson, Ionic liquids in solid-phase microextraction: A review, Anal. Chim. Acta. 695 (2011) 18–43. doi:10.1016/j.aca.2011.03.034.
  16. Fontanals, F. Borrull, R.M. Marcé, Ionic liquids in solid-phase extraction, TrAC – Trends Anal. Chem. 41 (2012) 15–26. doi:10.1016/j.trac.2012.08.010.
  17. Núñez, H. Gallart-Ayala, C.P.B. Martins, P. Lucci, New trends in fast liquid chromatography for food and environmental analysis, J. Chromatogr. A. 1228 (2012) 298–323. doi:10.1016/j.chroma.2011.10.091.
  18. Tang, X. Gu, Q. Luo, S. Chen, L. Wu, J. Xiong, Preparation of molecularly imprinted polymer for use as SPE adsorbent for the simultaneous determination of five sulphonylurea herbicides by HPLC, Food Chem. 150 (2014) 106–112. doi:10.1016/j.foodchem.2013.10.152.
  19. Martín-Esteban, Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation, TrAC – Trends Anal. Chem. 45 (2013) 169–181. doi:10.1016/j.trac.2012.09.023.
  20. Zheng, Y.P. Huang, Z.S. Liu, Recent developments and applications of molecularly imprinted monolithic column for HPLC and CEC, J. Sep. Sci. 34 (2011) 1988–2002. doi:10.1002/jssc.201100164.
  21. H. Wei, L.N. Mu, Q.Q. Pang, Y.P. Huang, Z.S. Liu, Preparation and characterization of grafted imprinted monolith for capillary electrochromatography, Electrophoresis. 33 (2012) 3021–3027. doi:10.1002/elps.201200042.
  22. Zhang, L. Huang, Q. Chen, Z. Chen, A silica monolithic column with chemically bonded L-pipecolic acid as chiral stationary phase for enantiomeric separation of dansyl amino acids by CEC-MS, Chromatographia. 75 (2012) 289–296. doi:10.1007/s10337-012-2188-6.
  23. P. Liang, X.Y. Meng, C.M. Liu, J.W. Wang, J.D. Qiu, Enantiomeric separation by open-tubular capillary electrochromatography using bovine-serum-albumin-conjugated graphene oxide-magnetic nanocomposites as stationary phase, Microfluid. Nanofluidics. 16 (2014) 195–206. doi:10.1007/s10404-013-1235-4.
  24. Hong, Y. Zheng, W. Hu, Y. Ji, Preparation and evaluation of b ovine serum albumin immobilized chiral monolithic column for affinity capillary electrochromatography, Anal. Biochem. 464 (2014) 43–50. doi:10.1016/j.ab.2014.07.015.
  25. Jiang, Y. Jiang, G. Shi, T. Zhou, Graphene oxide coated capillary for the analysis of endocrine-disrupting chemicals by open-tubular capillary electrochromatography with amperometric detection, J. Sep. Sci. 37 (2014) 1671–1678. doi:10.1002/jssc.201301126.
  26. Ye, J. Li, Determination of dopamine, epinephrine, and norepinephrine by open-tubular capillary electrochromatography using graphene oxide molecularly imprinted polymers as the stationary phase, J. Sep. Sci. 37 (2014) 2239–2247. doi:10.1002/jssc.201400287.
  27. Svobodová, O. Kofroňová, O. Benada, V. Král, I. Mikšík, Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol–gel modified inner capillary wall, J. Chromatogr. A. 1517 (2017) 185–194. doi:10.1016/j.chroma.2017.08.014.
  28. Zhang, Y. Zhang, W. Chen, Y. Zhang, L. Zhu, P. He, Q. Wang, Enantiomeric separation of tryptophan by open-tubular microchip capillary electrophoresis using polydopamine/gold nanoparticles conjugated DNA as stationary phase, Anal. Methods. 9 (2017) 3561–3568. doi:10.1039/C7AY01035D.
  29. Ma, Y. Xi, Y. Du, J. Yang, X. Ma, C. Chen, Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography, Microchim. Acta. 187 (2020). doi:10.1007/s00604-019-4037-x.
  30. Lei, L.Y. Zhang, L. Wan, B.F. Shi, Y.Q. Wang, W.B. Zhang, Hybrid monolithic columns with nanoparticles incorporated for capillary electrochromatography, J. Chromatogr. A. 1239 (2012) 64–71. doi:10.1016/j.chroma.2012.03.065.
  31. Ye, J. Li, Y. Xie, C. Liu, Graphene oxide coated capillary for chiral separation by CE, Electrophoresis. 34 (2013) 841–845. doi:10.1002/elps.201200516.
  32. Sitko, B. Zawisza, E. Malicka, Graphene as a new sorbent in analytical chemistry, TrAC Trends Anal. Chem. 51 (2013) 33–43. doi:10.1016/j.trac.2013.05.011.
  33. Desiderio, D.V. Rossetti, F. Iavarone, I. Messana, M. Castagnola, Capillary electrophoresis-mass spectrometry: Recent trends in clinical proteomics, J. Pharm. Biomed. Anal. 53 (2010) 1161–1169. doi:10.1016/j.jpba.2010.06.035.
  34. Han, Q. Wang, X. Liu, S. Jiang, Polymeric ionic liquid modified organic-silica hybrid monolithic column for capillary electrochromatography, J. Chromatogr. A. 1246 (2012) 9–14. doi:10.1016/j.chroma.2011.12.029.
  35. D’Orazio, S. Fanali, C 18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: Usefulness in nano-liquid chromatography and capillary electrochromatography, J. Chromatogr. A. 1232 (2012) 176–182. doi:10.1016/j.chroma.2011.11.056.
  36. Wang, Q.L. Deng, G.Z. Fang, M.F. Pan, Y. Yu, S. Wang, A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography, Anal. Chim. Acta. 712 (2012) 1–8. doi:10.1016/j.aca.2011.10.023.
  37. M. Wang, X.P. Yan, Fabrication of graphene oxide nanosheets incorporated monolithic column via one-step room temperature polymerization for capillary electrochromatography, Anal. Chem. 84 (2012) 39–44. doi:10.1021/ac202860a.
  38. Tang, L. Wang, H. Han, H. Qiu, X. Liu, S. Jiang, Preparation and characterization of dipyridine modified hybrid-silica monolithic column for mixed-mode capillary electrochromatography, RSC Adv. 3 (2013) 7894. doi:10.1039/c3ra40580j.
  39. CHI, W. WANG, Y. JI, Preparation and evaluation of pepsin affinity organic polymer capillary monolithic column, Chinese J. Chromatogr. 32 (2014) 791. doi:10.3724/SP.J.1123.2014.04042.
  40. Zhang, W. Zhang, T. Bao, Z. Chen, Enhancement of capillary electrochromatographic separation performance by conductive polymer in a layer-by-layer fabricated graphene stationary phase, J. Chromatogr. A. 1339 (2014) 192–199. doi:10.1016/j.chroma.2014.02.083.
  41. Zhang, X. Lei, L. Deng, M. Li, S. Yao, X. Wu, Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds, Microchim. Acta. 185 (2018) 318. doi:10.1007/s00604-018-2847-x.
  42. Xi, Y. Du, X. Sun, S. Zhao, Z. Feng, C. Chen, W. Ding, A monolithic capillary modified with a copoplymer prepared from the ionic liquid 1-vinyl-3-octylimidazolium bromide and styrene for electrochromatography of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids, Microchim. Acta. 187 (2020) 67. doi:10.1007/s00604-019-3894-7.
  43. Wang, N. Zheng, Y. Huang, J. Wang, X. Lin, Z. Xie, Dipyridyl-immobilized ionic liquid type hybrid silica monolith for hydrophilic interaction electrochromatography, Electrophoresis. 34 (2013) 3091–3099. doi:10.1002/elps.201300244.
  44. Gao, R. Mo, Y. Ji, Preparation and characterization of tentacle-type polymer stationary phase modified with graphene oxide for open-tubular capillary electrochromatography, J. Chromatogr. A. 1400 (2015) 19–26. doi:10.1016/j.chroma.2015.04.039.
  45. D. Dolzan, D.A. Spudeit, Z.S. Breitbach, W.E. Barber, G.A. Micke, D.W. Armstrong, Comparison of superficially porous and fully porous silica supports used for a cyclofructan 6 hydrophilic interaction liquid chromatographic stationary phase, J. Chromatogr. A. 1365 (2014) 124–130. doi:10.1016/j.chroma.2014.09.010.
  46. Aydoğan, K. Çetin, A. Denizli, Novel tentacle-type polymer stationary phase grafted with anion exchange polymer chains for open tubular CEC of nucleosides and proteins, Analyst. 139 (2014) 3790–3795. doi:10.1039/c3an01897k.
  47. Mikšík, K. Lacinová, Z. Zmatlíková, P. Sedláková, V. Král, D. Sýkora, P. Řezanka, V. Kašička, Open-tubular capillary electrochromatography with bare gold nanoparticles-based stationary phase applied to separation of trypsin digested native and glycated proteins, J. Sep. Sci. 35 (2012) 994–1002. doi:10.1002/jssc.201101049.
  48. C. Liu, Q.L. Deng, G.Z. Fang, H.L. Liu, J.H. Wu, M.F. Pan, S. Wang, Ionic liquids monolithic columns for protein separation in capillary electrochromatography, Anal. Chim. Acta. 804 (2013) 313–320. doi:10.1016/j.aca.2013.10.037.
  49. P. Liang, X.N. Wang, C.M. Liu, X.Y. Meng, J.D. Qiu, Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A. 1323 (2014) 135–142. doi:10.1016/j.chroma.2013.11.048.
  50. Singh, S. Ravichandran, D.D. Norton, S.D. Fugmann, R. Moaddel, Synthesis and characterization of a SIRT6 open tubular column: Predicting deacetylation activity using frontal chromatography, Anal. Biochem. 436 (2013) 78–83. doi:10.1016/j.ab.2013.01.018.
  51. Al-Hussin, R.I. Boysen, K. Saito, M.T.W. Hearn, Preparation and electrochromatographic characterization of new chiral β-cyclodextrin poly(acrylamidopropyl) porous layer open tubular capillary columns, J. Chromatogr. A. 1358 (2014) 199–207. doi:10.1016/j.chroma.2014.06.067.
  52. Ali, W.J. Cheong, Open tubular capillary electrochromatography with an N-phenylacrylamide-styrene copolymer-based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose, J. Sep. Sci. 38 (2015) 1763–1770. doi:10.1002/jssc.201401356.
  53. Wang, Y. Yao, Y. Li, S. Ma, X. Peng, J. Ou, M. Ye, Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC-MS/MS analysis of tryptic digest, Anal. Chim. Acta. 979 (2017) 58–65. doi:10.1016/j.aca.2017.05.004.
  54. OuYang, Y.-Y. Luo, Z.-S. Wen, W.-J. Wu, G.-Z. Cao, X.-Y. Zhu, L. Yang, Y.-G. Wang, J.-Y. Dong, Simultaneous Determination of Flumequine and Oxolinic Acid Residues in Aquatic Products Using Pressurized Capillary Electrochromatography, Food Anal. Methods. 7 (2014) 1770–1775. doi:10.1007/s12161-014-9818-6.
  55. Zhao, Q. Wang, J. Li, X. Qiao, Z. Xu, Study on an electrochromatography method based on organic-inorganic hybrid molecularly imprinted monolith for determination of trace trichlorfon in vegetables, J. Sci. Food Agric. 94 (2014) 1974–1980. doi:10.1002/jsfa.6511.
  56. L. Lin, J.W. Hsu, M.R. Fuh, Simultaneous determination of nitrate and nitrite in vegetables by poly(vinylimidazole-co-ethylene dimethacrylate) monolithic capillary liquid chromatography with UV detection, Talanta. 205 (2019). doi:10.1016/j.talanta.2019.06.082.
  57. D’Orazio, S. Fanali, Pressurized nano-liquid–junction interface for coupling capillary electrochromatography and nano-liquid chromatography with mass spectrometry, J. Chromatogr. A. 1317 (2013) 67–76. doi:10.1016/j.chroma.2013.08.052.