Cromatografía de gases como herramienta de estudio de la composición química y capacidad antioxidante de especies vegetales ricas en timol y carvacrol, cultivadas en Colombia

Muñoz-Acevedo, Arnner; Martínez, Jairo R.; Stashenko, Elena E.

Palavras-chave: GC-MS, GC-ECD, MWHD, SDE, SFE, timaol, carvacrol, essential oils, Lamiaceae, Verbenaceae, linolei acid oxidation, analysis, ABTS.

Resumo: The chemical composition of both extracts and essential oils isolated from Lamiaceae (Thymus vulgaris, Plectranthus amboinicus, Satureja brownei and Origanum majorana) and Verbenaceae (Lippia origanoides and Lippia micromera) families by Distillation-Solvent Extraction (SDE), Supercritical Fluid Extraction (SFE), and Microwave Assisted Hidrodistillation (MWHD) was determined by Gas Chromatography coupled to Mass Spectrometry (GC/MS).


Referências Bibliográficas

1. B.H. García. Flora medicinal de Colombia. Vol. III, Bogotá: Tercer Mundo, 1992, 507 p.
2. S.E. Kintzios. Oregano. In: Handbook of herbs and spices. Vol 2. Cambridge: Woodhead Publishing Ltd., 2004, pp. 536-50.
3. G.A. López González. Guía de los árboles y arbustos de la península ibérica y baleares. 2a ed. Madrid: Mundi Prensa, 2004, p. 749.
4. H. Baydar, O. Sagdiç, G. Özkan and T. Karadogan. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control, 15: 169–172 (2004).
5. M. Lahlou. Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res., 18: 435-436 (2004).
6. M.T. Baratta, H.J.D. Dorman, S.G. Deans, A.C. Figueiredo, J.G. Barroso and G. Ruberto. Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Fragr. J., 13: 235-244 (1998).
7. R.S. Lanigan and T.A. Yamarik. Final report on the safety assessment of BHT. Int. J. Toxicol., 21(Suppl. 2): 19-94 (2002).
8. W. Zheng and S. Wang. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 49: 5165-5170 (2001).
9. M. Godefroot, P. Sandra and M. Verzele. New method for quantitative essential oil analysis. J. Chromatogr., 203: 325-335 (1981).
10. E.E. Stashenko, R. Acosta and J.R. Martínez. High-resolution gas-chromatographic analysis of the secondary metabolites obtained by subcritical-fluid extraction from Colombian rue (Ruta graveolens L.). J. Biochem. Biophys. Methods, 43: 379-390 (2000).
11. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med., 26: 1231-1237 (1999).
12. H. Tamura and A. Yamagami. Antioxidative activity of monoacylated anthocyanins isolated from muscat bailey a grape. J. Agric. Food Chem., 42: 1612-1615 (1994).
13. E.E. Stashenko, M.C. Ferreira, L.G. Sequeda, J.R. Martínez, and J.W. Wong. Comparison of extraction methods and detection systems in the gas chromatographic analysis of volatile carbonyl compounds. J. Chromatogr. A, 779: 360-369 (1997).
14. R. Adams. Identification of essential oils components by gas chromatography/quadrupole mass spectroscopy. Carol Stream, Illinois: Allured Publishing Corporation. 2004, 456 p.
15. N.W. Davies. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20M phases. J. Chromatogr., 503: 1-24 (1990).
16. M.J.T.J. Arts, J.S. Dallinga, H.P. Voss, G.R.M.M. Haenen, and A. Bast. A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem., 88: 567-570 (2004).
17. M.J.T.J. Arts, G.R.M.M. Haenen, H.P. Voss, and A. Bast. Antioxidant capacity of reaction products limit the applicability of the trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol., 42: 45-49 (2004).
18. R. van den Berg, G.R.M.M. Haenen, H. van den Berg, and A. Bast. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem., 66: 511-517 (1999).
19. M. Ozgen, R.N. Reese, A.Z. Tulio Jr, J.C. Sheerens, and A.R. Miller. Modified 2,2-azino-bis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2´-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem., 54: 1151-1157 (2006).
20. H.J.D. Dorman, A.C. Figueiredo, J.G. Barroso, and S.G. Deans. In vitro evaluation of antioxidant activity of essential oils and their components. Flavour Fragr. J., 15: 12-16 (2000).
21. A.E. Edris. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res., 21: 308-323 (2007).
22. N. Nenadis, L.F. Wang, M. Tsimidou, and H.Y Zhang. Estimation of scavenging activity of phenolic compounds using the ABTS+. assay. J. Agric. Food Chem., 52: 4669-4674 (2004).
23. N.V. Yanishlieva, E.M. Marinova, M.H. Gordon, and V.G. Raneva. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systemas. Food Chem., 64: 59-66 (1999).
24. M.C. Foti and K.U. Ingold. Mechanism of inhibition of lipid peroxidation by g-terpinene, and unusual and potentially useful hydrocarbons antioxidant. J. Agric. Food Chem., 51: 2758-2765 (2003).
25. G. Ruberto and M.T. Baratta. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem., 69: 167-174 (2000).