http://dx.doi.org/10.4322/sc.2011.005

 

Como obter maior eficiência com partículas superficialmente porosas em HPLC

Santos Neto, Álvaro José

Palavras-chave: HPLC, UHPLC, partículas superficialmente porosas, volume extracoluna, eficiência, instrumentação.

Resumo Os recentes desenvolvimentos da cromatografia líquida têm permitido separações mais eficientes e rápidas. Pode-se citar a recente introdução da UHPLC (Ultra-High Performance Liquid Chromatography), com o uso de colunas preenchidas com partículas porosas menores do que 2 μm de diâmetro (sub-2 μm), bem como o desenvolvimento de colunas com partículas superficialmente porosas sub-3 μm as quais não dependem estritamente de um sistema UHPLC. Apesar de as colunas com partículas superficialmente porosas sub-3 μm apresentarem quase a mesma eficiência daquelas com partículas sub-2 μm totalmente porosas, sob pressões consideravelmente mais baixas, o uso das primeiras em um sistema HPLC “não-otimizado” pode prejudicar parte desse desempenho. Este artigo descreve as implicações do uso de um sistema HPLC convencional sem as possíveis otimizações quando se empregam as colunas com essas fases estacionárias sub-3 μm. Ademais, são descritos os procedimentos necessários para otimizar um HPLC convencional, de maneira a se obter um desempenho próximo ao de um UHPLC ao usar essas fases estacionárias sub-3 μm.


Referências Bibliográficas

1. Guillarme D, Ruta J, Rudaz S, Veuthey JL. New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches. Analytical and Bioanalytical Chemistry 2010; 397:1069.
2. Brice RW, Zhang X, Colón LA. Fused-Core, Sub-2 μm packings, and monolithic HPLC columns: a comparative evaluation. Journal of Separation Science 2009; 32:2723.
3. Lestremau F, De Villiers A, Lynen F, Cooper A, Szucs R, Sandra P. High efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable: Kinetic plots and experimental verification. Journal of Chromatography A 2007; 1138:120.
4. Hartonen K, Riekkola ML. Liquid chromatography at elevated temperatures with pure water as the mobile phase. Trends in Analytical Chemistry 2008; 27:1.
5. Majors RE, Carr PW. Glossary of HPLC and LC separation terms. LCGC North America 2008; 26:19.
6. Nguyen DTT, Guillarme D, Heinisch S, Barrioulet MP, Rocca JL, Rudaz S et al. High throughput liquid chromatography withsub-2um particles at high pressure and high temperature. Journal of Chromatography A 2007; 1167:76.
7. Salisbury JJ. Fused-core particles: a practical alternative to sub-2 micron particles. Journal of Chromatographic Science 2008; 46:883.
8. Halász I, Horváth C. Micro Beads coated with a porous thin layer as column packing in gas chromatography. Some properties of graphitized carbon black as the stationary phase. Analytical Chemistry 1964; 36:1178.
9. Gritti F, Leonardis I, Abia J, Guiochon G. Physical properties and structure of fine core-shell particles used as packing materials for chromatography: relationships between particle characteristics and column performance. Journal of Chromatography A 2010; 1217:3819.
10. Abrahim A, Al-Sayah M, Skrdla P, Bereznitski Y, Chen Y, Wu N. Practical comparison of 2.7 μm fused-core silica particles and porous sub-2 μm particles for fast separations in pharmaceutical process development. Journal of Pharmaceutical and Biomedical Analysis 2010; 51:131.
11. Fekete S, Ganzler K, Fekete J. Efficiency of the new sub-2 μm core–shell (Kinetex™) column in practice, applied for small and large molecule separation. Journal of Pharmaceutical and Biomedical Analysis 2011; 54:482.
12. McCalley DV. Instrumental considerations for the effective operation of short, highly efficient fused-core columns. Investigation of performance at high flow rates and elevated temperatures. Journal of Chromatography A 2010; 1217:4561.
13. Santos-Neto AJ. Problemas com o formato dos picos em cromatografia líquida – parte 2. Scientia Chromatographica 2009; 1(4):55.
14. Santos-Neto AJ. Uma visão técnica para a compreensão e resolução de problemas em sistemas de cromatografia líquida. Scientia Chromatographica 2009; 1(2):83.
15. Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography. 3rd ed. Hoboken: Wiley; 2009.
16. Dolan JW. Autosamplers, Part I – Design and Features. LCGC North America 2001; 14(5):276.
17. Dolan JW. Autosamplers, Part II – Problems and Solutions. LCGC North America 2001; 14(6):276.
18. Fountain KJ, Neue UD, Grumbach ES, Diehl DM. Effects of extra-column band spreading, liquid chromatography system operating pressure, and column temperature on the performance of sub-2-microm porous particles. Journal of Chromatography A 2009, 1216:5979.
19. Mac-Mod Analytical Inc. Technical report LC507. How to measure and reduce HPLC equipment extra column volume [cited 2010 nov.]. Available from: http://www.mac-mod.com/pdf/MMA084-ReduceECV_MM_Singles.pdf.
20. Rehman M, Evans K, Handley A, Massey P. Tests for liquid chromatographs. Chromatographia 1987; 24:492.
21. Mac-Mod Analytical Inc. Technical report LC500. Quick tips for converting conventional reversed-phase HPLC separations to ultra-fast separations [cited 2010 nov.]. Available from: http://www.mac-mod.com/pdf/MMA084-ReduceECV_MM_Singles.pdf.
22. Meyer VR. High-performance liquid chromatographic theory for the practitioner. J. Chromatogr. 1985; 334:197.
23. Mac-Mod Analytical Inc. Technical report A. troubleshooting guide to plumbing problems in HPLC [cited 2010 nov]. Available form: http://www.mac-mod.com/pdf/08_PlumbingTBS.pdf.
24. Santos-Neto AJ. Problemas com o formato dos picos em cromatografia líquida – parte 1. Scientia Chromatographica 2009; 1(3):69.
25. Gritti F, Sanchez CA, Farkas T, Guiochon G. Achieving the full performance of highly efficient columns by optimizing conventional benchmark high-performance liquid chromatography instruments. Journal of Chromatography A 2010; 1217:3000