http://dx.doi.org/10.4322/sc.2011.018

 

Comprehensive two-dimensional gas chromatography applied to the qualitative analysis of major compounds of bio-oil from pyrolysis of orange pulp

Moraes, Marina Silvana A.; Bortoluzzi, Janaína Heberle; Migliorini, Marcelo Vieira; Zini, Claudia Alcaraz; Caramão, Elina Bastos

Palavras-chave: Pyrolysis, orange, two-dimensional gas chromatography, GC×GC/FID, GC×GC/TOFMS.

Resumo Brazil occupies a prominent position on the international scene as a producer of orange and in the appropriate use of bagasse, which is a byproduct of juice production process. The rational use of this waste material is of great importance, as by environmental or economical aspects. The bio-oil from fast pyrolysis of orange pulp is an alternative use of this residue, which can agregate value to this material, producing energy and chemical raw materials. In this study, 167 compounds were tentatively identified by comprehensive two-dimensional gas chromatography with flame ionization detector (GC×GC‑FID) and mass spectrometry detector for time of flight (GC×GC/TOFMS), twenty six of these are found in concentrations above 1%. In addition, the optimization of some chromatographic parameters was presented. The higher selectivity of GC×GC/TOFMS for the one-dimensional chromatography is illustrated by the separation in the second dimension of co-eluting compounds in the first dimension, as well as by spectral deconvolution tool. This allows the separation of compounds by differences in their mass spectra, in the cases where the chromatographic separation was not possible.


Referências Bibliográficas

1. Goldemberg J. Biomassa e energia. Química Nova 2009; 32(3):582-587.
2. Galembeck F, Barbosa CAS, Sousa RA. Aproveitamento sustentável de biomassa e de recursos naturais na inovação química. Química Nova 2009; 32:572-581. http://dx.doi.org/10.1590/S0100-40422009000300003
3. Instituto Brasileiro de Geografia e Estatística – IBGE. [cited 2010 ago.]. Available from: http://www.ibge.gov.br.
4. Cortez LAB, Lora ES. Biomassa para energia. Campinas: Editora da Unicamp; 2006.
5. Centro de Tecnologia Canavieira – CTC. [cited 2010 ago.]. Available from: http://ctcanavieira.com.br.
6. Ripoli TCC, Ripoli MLC. Biomassa de cana-de-açúcar: colheita, energia e ambiente. Piracicaba; 2004.
7. Ripoli MLC, Gamero CA. Palhiço de Cana-deaçúcar: Ensaio Padronizado de recolhimento por enfardamento cilíndrico. Revista Energia na Agricultura 2007; 22(1):75-93.
8. Michelazzo MB, Braunbeck OA. Análise de seis sistemas de recolhimento do palhiço na colheita mecânica da cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental 2008; 12(5): 546-552.
9. Brás AM, Miranda F, Hipólito L, Dias LS. Biomassa e produção de energia. Revista O Minho, a Terra e o Homem 2006; 51:23-30.
10. Barbosa LCA, Silvério FO, Veloso DP. Determinação da relação siringila/guaiacila da lignina em madeiras de eucalipto por pirólise acoplada à cromatografia gasosa e espectrometria de massas (PI – CG/EM). Química Nova 2008; 31(8):2035-2041. http://dx.doi. org/10.1590/S0100-40422008000800023
11. Cardoso AL. Biorrefinaria: Investiga Investigação de Processos Fisico-Quimico, Fermentativo e Térmico de Aproveitamento de Serragem de Eucalipto [tese]. Santa Maria: Universidade Federal de Santa Maria; 2009.
12. Bridgwater AV, Czernik S. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004; 18(2):590-598. http://dx.doi.org/10.1021/ ef034067u
13. Couto GM. Utilização da serragem de Eucalyptus sp. na preparação de carvões ativados [dissertação]. Lavras: Universidade Federal de Lavras, 2009.
14. Cortez LAB, Rocha JD, Pérez JMM. Energia na Indústria de Açúcar e Álcool. UNIFEI, UNICAMP; 2004. p 1-22.
15. Santos F, Curvelo AAS. Polímeros. São Paulo: Universidade de São Paulo; 1999.
16. Mesa JM, Rocha JD, Olivares E, Barboza LA, Brossard LE, Brossard Junior, LEB. Pirólise Rápida em Leito Fluidizado: Uma Opção para transformar Biomassa em Energia Limpa. Revista Analytica 2003; 4:32-36.
17. Brasil. Ministério de Minas e Energia. [cited 2010 out.]. Available from: http://www.mme.gov.br/mme.
18. Diniz J. Conversão termica de casca de arroz a baixa temperatura: producao de biooleo e residuo silico-carbonoso adsorvente [tese]. Santa Maria: Universidade Federal de Santa Maria; 2005.
19. Samaniedo MRP. Uso de biocombustivel da pirolise rapida da palha de cana em um motor de ciclo Otto [dissertação]. Campinas: Universidade Estadual de Campinas; 2007.
20. Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 2004; 45(5):651-671. http://dx.doi. org/10.1016/S0196-8904(03)00177-8
21. Arni SA, Bosio B, Arato E. Syngas from sugarcane pyrolysis: An experimental study for fuel cell applications. Renewable Energy 2010; 35(1):29-35. http://dx.doi.org/10.1016/j.renene.2009.07.005
22. Lee MK, Tsai WT, Tsai YL, Lin SH. Pyrolysis of napier grass in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis 2010; 88(2):110-116. http://dx.doi.org/10.1016/j.jaap.2010.03.003
23. Strezov V, Evans TJ, Hayman C. Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology 2008; 99(17):8394-8399. PMid:18406608. http://dx.doi.org/10.1016/j.biortech.2008.02.039
24. Nowakowski DJ, Jones JM. Uncatalysed and potassiumcatalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. Journal of Analytical and Applied Pyrolysis 2008; 83(1):12-25. http://dx.doi.org/10.1016/j.jaap.2008.05.007
25. Von Mühlen C, Zini CA, Caramão EB, Marriott PJ. Caracterização de amostras petroquímicas e derivados utilizando cromatografia gasosa bidimensional abrangente (GCxGC). Química Nova 2006; 29(4):765-775. http://dx.doi.org/10.1590/ S0100-40422006000400025
26. Von Mühlen C, Zini CA, Caramão EB, Marriott PJ. Nomenclatura na língua portuguesa em cromatografia multidimensional abrangente. Química Nova 2007; 30(3):682-687. http://dx.doi.org/10.1590/ S0100-40422007000300030
27. Dallüge J, Beens J, Brinkman UA. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. Journal of Chromatography A 2003; 1000(1-2):69-108. http://dx.doi.org/10.1016/ S0021-9673(03)00242-5
28. Zini CA. Cromatografia Gasosa Bidimensional. Scientia Chromatographica 2009; 1:31.
29. Cortes HJ, Winniford B, Luong J, Pursch M. Comprehensive two dimensional gas chromatography review. Journal of Separation Science 2009; 32(5- 6.):883-904. PMid:19278007. http://dx.doi. org/10.1002/jssc.200800654
30. Mondello L, Tranchida PQ, Dugo P, Dugo G. Comprehensive two-dimensional gas chromatography-mass spectrometry: A review. Mass Spectrometry Reviews 2008; 27(2):101-124. PMid:18240151. http://dx.doi.org/10.1002/mas.20158
31. Giese EC, Dekker RFH, Barbosa AM. Orange bagasse as substrate for the production of pectinase and laccase by Botryosphaeria rhodina MAMB-05 in submerged and solid state fermentation. Bioresources 2008; 3(2):335-345.
32. Martins AF, Diniz J, Stahl JA, Cardoso AL. Caracterização dos produtos líquidos e do carvão da pirólise de serragem de eucalipto. Química Nova 2007; 30(4):873-878. http://dx.doi.org/10.1590/ S0100-40422007000400021
33. Martins AF, Cardoso AL, Stahl JA, Diniz J. Low temperature conversion of rice husks, eucalyptus sawdust and peach stones for the production of carbon-like adsorbent. Bioresource Technol. 2007; 98(5):1095-1100. PMid:16790341. http://dx.doi.org/10.1016/j.biortech.2006.04.024
34. Marsman JH, Wildschut J, Mahfud F, Heeres HJ. Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection. Journal of Chromatography A 2007; 1150(1-2):21-27. PMid:17141251. http:// dx.doi.org/10.1016/j.chroma.2006.11.047
35. Ramos L. Comprehensive Two Dimensional Gas Chromatography. Amsterdam: Elsevier; 2009. vol. 55.
36. Focant J-F, Cochran JW, Dimandja J-M, DePauw E, Sjödin A, Turner WE et al. High-throughput analysis of human serum for selected polychlorinated biphenyls (PCBs) by gas chromatography-isotope dilution time-of-flight mass spectrometry (GC-IDTOFMS). Analyst 2004; 129:331-336. PMid:15042164. http:// dx.doi.org/10.1039/b313675b.