http://dx.doi.org/10.4322/sc.2012.006

 

Caracterização de fenóis no bio-óleo da pirólise de caroço de pêssego por GC/MS e GC×GC/TOFMS

Migliorini, Marcelo Vieira; Moraes, Marina Silvana A.; Machado, Maria Elisabete; Caramão, Elina Bastos

Palavras-chave: Caroços de pêssego, pirólise, cromatografia gasosa monodimensional, cromatografia gasosa bidimensional abrangente.

Resumo Neste trabalho analisou-se o bio-óleo produzido pela pirólise de caroços de pêssego usando 1D-GC/qMS (cromatografia gasosa monodimensional acoplada a espectrometria de massa quadrupolar) e GC×GC/ TOFMS (cromatografia gasosa bidimensional abrangente acoplada a espectrometria de massa por tempo de voo). Por 1D-GC/qMS foram identificados tentativamente 51 compostos e, por CG×GC/TOFMS, 207 compostos. As classes identificadas em ambas as técnicas foram alcoóis, aldeídos, anidridos, cetonas, ésteres, éteres e fenóis. Entretanto, as classes de ácidos carboxílicos, hidrocarbonetos e derivados de açúcar foram identificadas apenas na CG×GC/TOFMS, que se mostrou a técnica mais eficiente para esse tipo de análise. Os fenóis foram os compostos majoritários, tendo-se obtido uma distribuição estruturada no espaço bidimensional, o que facilitou a separação/identificação de pelo menos três subclasses de fenóis: alquil monofenóis, alquil metóxi fenóis e alquil benzenodióis. A caracterização mostrou que o bio-óleo pode ser uma fonte potencial de matéria-prima para a indústria química.


Referências Bibliográficas

1. Lora ES, Andrade RV. Biomass as energy source in Brazil. Renewable and Sustainable Energy Reviews 2009; 13:777-88. http://dx.doi.org/10.1016/j. rser.2007.12.004
2. Goldemberg J. Biomassa e energia. Química Nova 2009; 32:582-87. http://dx.doi.org/10.1590/ S0100-40422009000300004
3. Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections Energy Conversion and Management 2008; 49:2106-16. http:// dx.doi.org/10.1016/j.enconman.2008.02.020
4. Demirbas MF. Biorefineries for biofuel upgrading: A critical review. Applied Energy 2009; 86:S151-61. http://dx.doi.org/10.1016/j.apenergy.2009.04.043
5. Guedes CLB, Adão DC, Quessada TP, Borsato D, Galão OF, Mauro ED, et al. Avaliação de biocombustível derivado do bio-óleo obtido por pirólise rápida de biomassa lignocelulósica como aditivo para gasolina. Química Nova 2010; 33:781-86. http://dx.doi. org/10.1590/S0100-40422010000400003
6. Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews 2011; 15:1615-24. http://dx.doi.org/10.1016/j. rser.2010.11.054
7. Venderbosch RH, Prins W. Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining 2010; 4:178208. http://dx.doi.org/10.1002/ bbb.205
8. Cunha JA, Pereira MM, Valente LMM, De la Piscina PR, Homs N, Santos MRL. Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass and Bioenergy 2011; 35:2106-16. http:// dx.doi.org/10.1016/j.biombioe.2011.02.019
9. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 2012; 38:68-94. http://dx.doi.org/10.1016/j. biombioe.2011.01.048
10. Rogers JG, Brammer JG. Estimation of the production cost of fast pyrolysis bio-oil. Biomass and Bioenergy 2012; 36:208-17. http://dx.doi. org/10.1016/j.biombioe.2011.10.028
11. Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, et al. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresource Technology 2011; 102:3512-20. PMid:21129955. http:// dx.doi.org/10.1016/j.biortech.2010.11.023
12. Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 2007; 98:22-8. PMid:16426847. http:// dx.doi.org/10.1016/j.biortech.2005.12.005
13. Cao JP, Xiao, XB, Zhang SY, Zhao XY, Sato K, Ogawa Y, et al. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste. Bioresource Technology 2011; 102:2009-15. PMid:20943376. http:// dx.doi.org/10.1016/j.biortech.2010.09.057
14. Mohan D, Pittman CU Jr, Steele PH. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006; 20:848-89. http://dx.doi.org/10.1021/ ef0502397
15. Silvério FO, Barbosa LCA, Piló-Veloso D. A pirólise como técnica analítica. Química Nova 2008; 31:1543-52. http://dx.doi.org/10.1590/ S0100-40422008000600045
16. Özbay N, Apaydin-Varol E, Uzun EB, Pütün AE. Characterization of bio-oil obtained from fruit pulp pyrolysis Energy 2008; 33:1233-40. http://dx.doi. org/10.1016/j.energy.2008.04.006
17. Czernik S, Bridgwater AV. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004; 18:590-8. http://dx.doi.org/10.1021/ ef034067u
18. Busetto L, Fabbri D, Mazzoni R, Salmi M, Torri C, Zanotti V. Application of the Shvo catalyst in homogeneous hydrogenation of bio-oil obtained from pyrolysis of white poplar: New mild upgrading conditions. Fuel 2011; 90:1197-1207. http://dx.doi. org/10.1016/j.fuel.2010.10.036
19. Wannapeera J, Fungtammasan B, Worasuwannarak N. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 2011; 92(1):99-105. http://dx.doi. org/10.1016/j.jaap.2011.04.010
20. Das P, Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass and Bioenergy 2004; 27:265-75. http://dx.doi.org/10.1016/j.biombioe.2003.12.001
21. Jung S-H, Kang B-S, Kim J-S. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. Journal of Analytical and Applied Pyrolysis 2008; 82:240-7. http://dx.doi.org/10.1016/j. jaap.2008.04.001
22. Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C. Characterization of bio-oils in chemical families. Biomass and Bioenergy 2007; 31:222-42. http://dx.doi.org/10.1016/j.biombioe.2006.02.006
23. Salehi E, Abedi J, Harding T. Bio-oil from Sawdust: Pyrolysis of Sawdust in a Fixed-Bed System. Energy Fuels 2009; 23:3767-72. http://dx.doi.org/10.1021/ ef900112b
24. Mullen CA, Boateng AA. Chemical Composition of Bio-oils Produced by Fast Pyrolysis of Two Energy Crops. Energy Fuels 2008; 22:2104-9. http://dx.doi. org/10.1021/ef700776w
25. Cortes HJ, Winniford B, Luong J, Pursch M. Comprehensive two dimensional gas chromatography review. Journal of Separation Science 2009; 32:883- 904.. PMid:19278007. http://dx.doi.org/10.1002/ jssc.200800654
26. Strezov V, Evans TJ, Hayman C. Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology 2008; 99:8394-9. PMid:18406608. http:// dx.doi.org/10.1016/j.biortech.2008.02.039
27. Mondello L, Tranchida PQ, Dugo P, Dugo G. Comprehensive two-dimensional gas chromatography-mass spectrometry: A review. Mass Spectrometry Reviews 2008; 27:101-24. PMid:18240151. http://dx.doi.org/10.1002/mas.20158
28. Marsman JH, Wildschut J, Evers P, De Koning S, Heeres HJ. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-offlight mass spectrometry. Journal of Chromatography A 2008; 1188:17-25. PMid:18302963. http://dx.doi. org/10.1016/j.chroma.2008.02.034
29. Windt M, Meier D, Marsman JH, Heeres HJ, De Koning S. Micro-pyrolysis of technical lignins in a new modular rig and product analysis by GC–MS/ FID and GC × GC–TOFMS/FID. Journal of Analytical and Applied Pyrolysis 2009; 85:38-46. http://dx.doi. org/10.1016/j.jaap.2008.11.011
30. Sfetsas T, Michailof C, Lappas A, Li Q, Kneale B. Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Journal of Chromatography A 2011; 1218(21):3317-25. http://dx.doi.org/10.1016/j. chroma.2010.10.034
31. Moraes MSA, Migliorini MV, Damasceno FC, Georges F, Rodrigues SA, Zini CA, et al. Qualitative analysis of bio oils of agricultural residues obtained through pyrolysis using comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detector. Journal of Analytical and Applied Pyrolysis 2012; 98:51-64. http://dx.doi. org/10.1016/j.jaap.2012.05.007
32. Moraes MSA, Georges F, Rodrigues SA, Damasceno FC, Maciel GPS, Zini CA, et al. Analysis of products from pyrolysis of Brazilian sugar cane straw. Fuel Processing Technology 2012; 101:35-43. http://dx.doi. org/10.1016/j.fuproc.2012.03.004
33. Moraes MSA, Bortoluzzi JH, Migliorini MV, Zini CA, Caramão EB. Cromatografia gasosa bidimensional abrangente aplicada à análise qualitativa dos componentes majoritários do bio-óleo da pirólise de bagaço de laranja. Scientia Chromatographica 2011; 3:301-4. http://dx.doi. org/10.4322/sc.2011.018
34. Djokic MR, Dijkmans T, Yildiz G, Prins W, Greem KM. Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography. Journal of Chromatography A 2012; 1257:131-40. PMid:22897863. http://dx.doi. org/10.1016/j.chroma.2012.07.035
35. Amen-Chem C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresource Technol 2001; 79:277- 99.. http://dx.doi.org/10.1016/S0960-8524(00)00180-2
36. Raseira MCB, Quezada AC. Classificação botânica, origem e evolução In: Pêssego: produção e aspectso técnicos. Brasilia: Embrapa Comunicação para a Tecnologia; 2000. 154 p.
37. Instituto Brasileiro de Geografia e Estatística. Séries Históricas e Estatísticas [cited 2011 June 25]. Available from: http://seriesestatisticas.ibge.gov.br/series. aspx?vcodigo=PA9&sv=83&t=lavoura-permanentequantidade- produzida (acessado em 25/06/2011).
38. Ingram L, Mohan D, Bricka M, Steele P, Strobel D, Crocker D, et al. Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy Fuels 2008; 22:614-25. http://dx.doi.org/10.1021/ ef700335k
39. Wang S, Guo X, Wang K, Luo Z. Influence of the interaction of components on the pyrolysis behavior of biomass. Journal of Analytical and Applied Pyrolysis 2011; 91:183-9. http://dx.doi.org/10.1016/j. jaap.2011.02.006
40. Lee MK, Tsai WT, Tsai, YL, Lin SH. Pyrolysis of napier grass in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis 2010; 88:110-6. http:// dx.doi.org/10.1016/j.jaap.2010.03.003.