http://dx.doi.org/10.4322/sc.2014.018

 

Development of a dynamic headspace – capillary GC – MS method for the determination of ultra-trace levels of vinyl chloride in water samples and during migration studies

David, Frank; Jacq, Karine; Devos, Christophe; Menessier-Cocardon, Emilie; Benali-Raclot, Dalel; Gaudichet-Maurin, Emmanuelle; Oberti, Sandrine; Benanou, David; Sandra, Pat

Palavras-chave: Vinyl chloride, Dynamic headspace, Capillary GC – MS, Migration, Polyethylene film.

Resumo A method based on automated dynamic headspace sampling followed by thermal desorption – capillary GC – MS was developed to monitor ultratraces of vinyl chloride in water samples. The method shows excellent performance including a limit of quantification (LOQ) below 10 ng/L, good linearity (r2 > 0.999) in the 10 to 200 ng/L concentration range and an RSD below 10% at all calibration levels. The method was applied to study the release of traces of vinyl chloride monomer (VCM) in water from aged polyvinyl chloride (PVC) pipes installed in water supply systems. A solution to avoid this leaching would be the insertion of a polyethylene pipe inside the PVC pipe provided that vinyl chloride does not permeate through polyethylene. Vinyl chloride migration through a high density polyethylene (HDPE) film was therefore studied with the developed sampling method.


Referências Bibliográficas

1. Burgess RH (1982) Manufacture and processing of PVC. Applied Science Publishers Ltd, London.
2. WHO (2004), Guidelines for Drinking Water Quality, World Health Organization, Geneva and http://www.who.int/water_sanitation_health/dwq/chemicals/vinylchloride/en/
3. Ando M, Sayato Y (1984) Water Res 18:315-318.
4. Benfenati E, Natangelo M, Davoli E, Fanelli R (1991) Food Chem Toxicol 29:131-134.
5. Walter RK, Lin P-H, Edwards M, Richardson RE (2011) Water Res 45:2607-2615.
6. Al-Malack MH, Sheikheldin SY, Fayad NM, Khaja N (2000) Water, Air & Soil Pollution 120:195-208.
7. Al-Malack MH, Sheikheldin SY (2001) Water Res 35:3283-3290.
8. EU Council Directive 78/142/EEC, Official Journal EC, 30/1/1978.
9. Montiel A, Rauzy S (1983) Revue Française des Sciences de l’Eau 2 :255-266.
10. Gryder-Boutet DE, Kennish JM (1988) Am Water Works Assoc J 80:52-55
11. Cochran JW, Henson JM (1988) J High Resol Chromatogr 11:869-873.
12. Schlett C, Pfeifer B (1993) VomWasser 81:1-6.
13. U.S. Environmental Protection Agency (1995) Method 524.2, Revision 4.1, Cincinnati.
14. Driscoll JN, Duffy M, Pappas S, Webb M (1987) J Chromatogr Sci 25:369-375.
15. Ho JSY (1989) J Chromatogr Sci, 27:91-98.
16. Aeppli C, Berg M, Hofstetter TB, Kipfer R, Schwarzenbach RP (2008) J Chromatogr A 1181:116-124.
17. Shirey RE (1995) J High Resol Chromatogr 18:495-499.
18. Charvet R, Cun C, Leroy P (2000) Analusis 28:980-987.
19. Guimarães AD, Carvalho JJ, Gonçalves C, Alpendurada MDF (2008) Int J Environ Anal Chem 88:151-164.
20. Jochmann MA, Yuan X, Schmidt TC (2007) Anal Bioanal Chem 387 :2163-2174.
21. Wittsiepe J, Selenka F, Jackwerth E (1990) Fresenius J Anal Chem 336:322-327.
22. Wittsiepe J, Wallschläger D, Selenka F, Jackwerth E (1993) Fresenius J Anal Chem 346:1028-1034.
23. Wittsiepe J, Selenka F, Jackwerth E (1996) Fresenius J Anal Chem 354:910-914.
24. Hino T, Nakanishi S, Maeda T, Hobo T (1998), J Chromatogr A 810:141-147.