http://dx.doi.org/10.4322/sc.2016.003

 

Microextração em gota única (SDME): fundamentos e aplicações

Pinto, Iohana Pinto de; Pedroso, Marcio Pozzobon

Palavras-chave: preparo de amostra, microextração em fase líquida, cromatografia, gota única.

Resumo: As técnicas clássicas de preparo de amostra têm sido substituídas por técnicas miniaturizadas devido ao baixo custo, pequeno consumo de solventes e possibilidade de automação. A primeira técnica de microextração em fase líquida desenvolvida foi a microextração em gota única (SDME) e, desde então, novos modos de operação foram desenvolvidos. O princípio da SDME está baseado na partição dos analitos de interesse entre a amostra e uma pequena gota de um solvente orgânico. Princípios teóricos, diferentes modos de operação e aplicações recentes da SDME para a determinação de compostos orgânicos por técnicas cromatográficas são apresentados nessa revisão.


Referências Bibliográficas

1. Chen Y, Guo Z, Wang X, Qiu C. Sample preparation. Journal of Chromatography A. 2008;1184(1-2):191–219.
2. Lanças FM. Avanços Recentes e Tendências Futuras das Técnicas de Separação : uma visão pessoal. Scientia Chromatographica. 2008;17–44.
3. Psillakis E, Kalogerakis N. Developments in single-drop microextraction. Trends in Analytical Chemistry. 2002;21(1):53–63.
4. Arthur C, Pawlyszin J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry. 1990;62(19):2145–8.
5. Pawliszyn J. Sample preparation: Quo vadis? Analytical Chemistry. 2003;75(11):2543–58.
6. Moreira BJ, Yokoya JMC, Gaitani CM de. Microextração líquido-líquido dispersiva (DLLME): fundamentos, inovações e aplicações biológicas. Scientia Chromatographica. 2015;6(3):186–204.
7. Hu B, He M, Chen B, Xia L. Liquid phase microextraction for the analysis of trace elements and their speciation. Spectrochimica Acta – Part B Atomic Spectroscopy.; 2013;86:14–30.
8. Jeannot M a, Cantwell FF. Solvent microextraction into a single drop. Analytical Chemistry. 1996;68(13):2236–40.
9. He Y, Lee HK. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Analytical Chemistry. 1997;69(22):4634–40.
10. Cortada C, Vidal L, Tejada S, Romo A, Canals A. Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta. 2009 ;638(1):29–35.
11. Yu Y, Chen B, Shen C, Cai Y, Xie M, Zhou W, et al. Multiple headspace single-drop microextraction coupled with gas chromatography for direct determination of residual solvents in solid drug product. Journal of Chromatography A. 2010;1217(32):5158–64.
12. Jager LS, Andrews a. RJ. Solvent microextraction of chlorinated pesticides. Chromatographia. 1999;50(11-12):733–8.
13. Šrámková I, Horstkotte B, Solich P, Sklenářová H. Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples. Analytica Chimica Acta. 2014;828:53–60.
14. Xia L, Hu B, Jiang Z, Wu Y, Li L, Chen R. 8-Hydroxyquinoline-chloroform single drop microextraction and electrothermal vaporization ICP-MS for the fractionation of aluminium in natural waters and drinks. Journal of Analytical Atomic Spectrometry. 2005;20(5):441.
15. Jeannot MA, Przyjazny A, Kokosa JM. Single drop microextraction-development, applications and future trends. Journal of chromatography A. 2010 ;1217(16):2326–36.
16. Kokosa JM. Advances in solvent-microextraction techniques. Trends in Analytical Chemistry. 2013;43:2–13.
17. Jain A, Verma KK. Recent advances in applications of single-drop microextraction: A review. Analytica Chimica Acta. 2011;706(1):37–65.
18. Agostinho AD. FM. Determinação do coeficiente de distribuição (Kd) de Benzo(A)pireno em solo por isotermas de sorção. Química Nova. 2006;29(4):657–61.
19. Borges, B. K.; Figueiredo, C. E.; Queiroz CME. Preparo de amostras para análise de compostos orgânicos. 1st ed. GEN, editor. Rio de Janeiro: Editora LTC; 2015.
20. Sarafraz Yazdi A, Razavi N. Separation and determination of amitriptyline and nortriptyline in biological samples using single- drop microextraction with GC. Chromatographia. 2011;73(5-6):549–57.
21. Jeannot M a., Cantwell FF. Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Analytical Chemistry. 1997;69(2):235–9.
22. Xu J, Liang P, Zhang T. Dynamic liquid-phase microextraction of three phthalate esters from water samples and determination by gas chromatography. Analytica Chimica acta. 2007;597(1):1–5.
23. Theis AL, Waldack AJ, Hansen SM, Jeannot MA. Headspace solvent microextraction. Analytical Chemistry. 2001;73(23):5651–4.
24. Rincón A a., Pino V, Ayala JH, Afonso AM. Headspace-single drop microextraction (HS-SDME) in combination with high- performance liquid chromatography (HPLC) to evaluate the content of alkyl- and methoxy-phenolic compounds in biomass smoke. Talanta. 2011;85(3):1265–73.
25. Shen G, Lee HK. Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection. Analytical Chemistry. 2003;75(1):98–103.
26. Xu L, Basheer C, Lee HK. Developments in single-drop microextraction. Journal of Chromatography A. 2007;1152(1-2):184–92.
27. Liu W, Lee HK. Continous flow microextraction exceeding 1000-fold concentration of dilute analytes. Analytical Chemistry. 2000;72(18):4462–7.
28. Li Y, Zhang T, Liang P. Application of continuous-flow liquid-phase microextraction to the analysis of volatile halohydrocarbons in water. Analytica Chimica Acta. 2005;536(1-2):245–9.
29. Ho TS, Pedersen-Bjergaard S, Rasmussen KE. Recovery, enrichment and selectivity in liquid-phase microextraction: Comparison with conventional liquid-liquid extraction. Journal of Chromatography A. 2002;963(1-2):3–17.
30. Yangcheng L, Quan L, Guangsheng L, Youyuan D. Directly suspended droplet microextraction. Analytica Chimica Acta. 2006 May;566(2):259–64.
31. Khalili Zanjani MR, Yamini Y, Shariati S, Jönsson JA. A new liquid-phase microextraction method based on solidification of floating organic drop. Analytica chimica acta. 2007;585(2):286–93.
32. Kokosa JM. Recent trends in using single-drop microextraction and related techniques in green analytical methods. Trends in Analytical Chemistry. 2015;71:194–204.
33. Jahan S, Xie H, Zhong R, Yan J, Xiao H, Fan L, et al. A highly efficient three-phase single drop microextraction technique for sample preconcentration. The Analyst. 2015;140:3193–200.
34. López-Blanco C, Gómez-Álvarez S, Rey-Garrote M, Cancho-Grande B, Simal-Gándara J. Determination of carbamates and organophosphorus pesticides by SDME-GC in natural water. Analytical and Bioanalytical Chemistry. 2005;383(4):557–61.
35. Przyjazny A, Kokosa JM. Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction. Journal of Chromatography A. 2002;977(2):143–53.
36. Amde M, Tan Z-Q, Liu R, Liu J-F. Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis. Journal of Chromatography A. 2015;1395:7–15.
37. Zhang M, Huang J, Wei C, Yu B, Yang X, Chen X. Mixed liquids for single-drop microextraction of organochlorine pesticides in vegetables. Talanta. 2008;74(4):599–604.
38. Wardencki W, Curyło J, Namieśnik J. Trends in solventless sample preparation techniques for environmental analysis. Journal of Biochemical and Biophysical Methods. 2007;70(2):275–88.
39. Bendicho C, Costas-Mora I, Romero V, Lavilla I. Nanoparticle-enhanced liquid-phase microextraction.Trends in Analytical Chemistry. 2015;68:78–87.
40. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M. The roles of ionic liquids in sorptive microextraction techniques. Trends in Analytical Chemistry. 2010;29(7):602–16.
41. De Souza Pinheiro A, de Andrade JB. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta. 2009;79(5):1354–9.
42. Pinheiro ADS, da Rocha GO, De Andrade JB. A SDME/GC-MS methodology for determination of organophosphate and pyrethroid pesticides in water. Microchemical Journal. 2011;99(2):303–8.
43. Martendal E, Budziak D, Carasek E. Application of fractional factorial experimental and Box-Behnken designs for optimization of single-drop microextraction of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole from wine samples. Journal of chromatography A. 2007;1148(2):131–6.
44. Kaykhaii M, Abdi A. Rapid and sensitive determination of acrylamide in potato crisps using reversed-phase direct immersion single drop microextraction-gas chromatography. Analytical Methods. 2013;5(5):1289.
45. Batlle R, López P, Nerín C, Crescenzi C. Active single-drop microextraction for the determination of gaseous diisocyanates. Journal of Chromatography A. 2008;1185(2):155–60.
46. Aguilera-Herrador E, Lucena R, Cardenas S, Valcárcel M. Direct coupling of ionic liquid based single-drop microextraction and GC/MS. Analytical Chemistry. 2008;80(3):793–800.
47. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters. Journal of Chromatography A. 2008;1201(1):106–11.
48. Zhao F-Q, Li J, Zeng B-Z. Coupling of ionic liquid-based headspace single-drop microextraction with GC for sensitive detection of phenols. Journal of separation science. 2008;31(16-17):3045–9.
49. Spietelun A, Marcinkowski Ł, De La Guardia M, Namieśnik J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta. 2014;119:34–45.
50. Ye C-L, Zhou Q-X, Wang X-M. Headspace liquid-phase microextraction using ionic liquid as extractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at trace levels in water samples. Analytica Chimica Acta. 2006;572(2):165–71.
51. Ye C, Zhou Q, Wang X, Xiao J. Determination of phenols in environmental water samples by ionic liquid-based headspace liquid-phase microextraction coupled with high-performance liquid chromatography. Journal of Separation Science. 2007;30(1):42–7.
52. Vidal L, Chisvert A, Canals A, Salvador A. Sensitive determination of free benzophenone-3 in human urine samples based on an ionic liquid as extractant phase in single-drop microextraction prior to liquid chromatography analysis. Journal of Chromatography A. 2007;1174(1-2):95–103.
53. Liu J-F, Peng J-F, Chi Y-G, Jiang G-B. Determination of formaldehyde in shiitake mushroom by ionic liquid-based liquid-phase microextraction coupled with liquid chromatography. Talanta. 2005;65(3):705–9.
54. Wen X, Deng Q, Wang J, Yang S, Zhao X. A new coupling of ionic liquid based-single drop microextraction with tungsten coil electrothermal atomic absorption spectrometry. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy. 2013;105:320–5.
55. Č abala R, Bursová M. Bell-shaped extraction device assisted liquid-liquid microextraction technique and its optimization using response-surface methodology. Journal of Chromatography A. 2012;1230:24–9.
56. Li X, Xue A, Chen H, Li S. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection. Journal of Chromatography A. 2013;1280:9–15.
57. Ouyang G, Zhao W, Pawliszyn J. Automation and optimization of liquid-phase microextraction by gas chromatography. Journal of Chromatography A. 2007;1138(1-2):47–54.
58. Williams DBG, George MJ, Meyer R, Marjanovic L. Bubbles in solvent microextraction: the influence of intentionally introduced bubbles on extraction efficiency. Analytical Chemistry. 2011;83(17):6713–6.
59. Williams DBG, George MJ, Marjanovic L. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method. Journal of agricultural and Food Chemistry. American Chemical Society; 2014;62(31):7676–81.
60. Pereira AC, Rocha FRP. Liquid-liquid microextraction in a multicommuted flow system for direct spectrophotometric determination of iodine value in biodiesel. Analytica Chimica Acta. 2014;829:28–32.
61. Fang C, Xiong Y, Liang Q, Li Y, Peng P. Optimization of headspace single-drop microextraction technique for extraction of light hydrocarbons (C6-C12) and its potential applications. Organic Geochemistry. 2011;42(4):316–22.
62. Hashemi M, Habibi A, Jahanshahi N. Determination of cyclamate in artificial sweeteners and beverages using headspace single-drop microextraction and gas chromatography flame-ionisation detection. Food Chemistry. 2011;124(3):1258–63.
63. Vallecillos L, Pocurull E, Borrull F. Fully automated ionic liquid-based headspace single drop microextraction coupled to GC-MS/MS to determine musk fragrances in environmental water samples. Talanta. 2012;99:824–32.
64. Gholivand MB, Piryaei M. A method for fast analysis of volatile components of Citrus aurantium L. leaves. Natural Product Research. 2013;27(14):1315–8.
65. Tang B, Tian M, Row KH. Determination of terpenoids in Chamaecyparis obtusa Leaves by headspace single-drop microextraction with gas chromatography detection. Analytical Letters. 2013;47(1):48–57.
66. Enteshari M, Mohammadi A, Nayebzadeh K, Azadniya E. Optimization of headspace single-drop microextraction coupled with gas chromatography-mass spectrometry for determining volatile oxidation compounds in mayonnaise by response surface methodology. Food Analytical Methods. 2014;7(2):438–48.
67. Jiang C, Wei S, Li X, Zhao Y, Shao M, Zhang H, et al. Ultrasonic nebulization headspace ionic liquid-based single drop microextraction of flavour compounds in fruit juices. Talanta. 2013;106:237–42.
68. Kaykhaii M, Ghalehno MH. Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography. Analitycall Methods. 2013;5(20):5622–6.
69. Yu J, Zhao C, Chong F, Cao Y, Subhan F, Cui B, et al. A simple, rapid and eco-friendly approach for the analysis of aromatic amines in environmental water using single-drop microextraction – gas chromatography. Journal of Chromatographic Science. 2015;53(2):360–5.
70. Tian F, Liu W, Fang H, An M, Duan S. Determination of six organophosphorus pesticides in water by single-drop microextraction coupled with GC-NPD. Chromatographia. 2013;77(5-6):487–92.
71. Jiang Y, Zhang X, Tang T, Zhou T, Shi G. Determination of endocrine disruptors in environmental water by single-drop microextraction and high-performance liquid chromatography. Analytical Letters. 2014;48(4):710–25.
72. Dos Anjos JP, de Andrade JB. Simultaneous determination of pesticide multiresidues in white wine and rosé wine by SDME/GC-MS. Microchemical Journal.2015;120:69–76.
73. Kaykhaii M, Abdi A. Rapid and sensitive determination of acrylamide in potato crisps using reversed-phase direct immersion single drop microextraction-gas chromatography. Analytical Methods.2013;5(5):1289.
74. George MJ, Marjanovic L. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography − mass spectrometry – based analysis using the bubble-in-drop single drop microextraction enrichment method. Journal of Agricultural and Food Chemistry. 2014;62:7676–81.
75. Liu D, Min S. Rapid analysis of organochlorine and pyrethroid pesticides in tea samples by directly suspended droplet microextraction using a gas chromatography-electron capture detector. Journal of Chromatography A. 2012;1235:166–73.
76. http://www.sepscience.com/Sectors/Food/Articles/1455-/Liquid-phase-Microextraction-in-Food-Analysis [Internet]. Available from: http://www.sepscience.com/Sectors/Food/Articles/1455-/Liquid-phase-Microextraction-in-Food-Analysis.