http://dx.doi.org/10.4322/sc.2016.011

 

Recentes avanços da microextração em fase sólida no tubo (in-tube SPME) e sua aplicação em análises ambientais e alimentícias

Toffoli, Ana Lúcia de; Lanças, Fernando M.

Palavras-chave: in-tube SPME, fases extratoras, matrizes ambientais e alimentícias.

Resumo: O preparo de uma amostra é usualmente necessário para isolar os analitos de interesse dos interferentes presentes. A determinação desses, em concentrações muito baixas, requer procedimentos analíticos corretos que consigam concentrar os compostos alvos antes de sua quantificação. Diante disso, tendências recentes na preparação das amostras incluem algumas características como automação, miniaturização, alto rendimento, redução no consumo de solventes e tempo de operação. Com isso, técnicas capilares de microextração online vem sendo amplamente utilizadas como é o caso da in-tube solid-phase microextraction (in-tube SPME). Esta realiza extração e concentração dos analitos de interesse, tendo sido combinada com a cromatografia líquida de alta eficiência a qual, por sua vez, pode ou não ser acoplada a espectrometria de massas. Este trabalho descreve os avanços da técnica in-tube SPME, a qual vem sendo aplicada com sucesso na determinação de diferentes analitos em matrizes ambientais e alimentícias, além de uma visão geral sobre o desenvolvimento de novas fases extratoras que resultam em maior especificidade e seletividade analítica.


Referências Bibliográficas

[1] PAWLISZYN, J. Sampling and Sample Preparation for Field and Laboratory: Fundamentals and New Directions in Sample Preparation. Comprehensive Analytical Chemistry, vol. XXXVII, Elsevier, Amsterdam, 2002.
[2] PLOTKA-WASYLKA, J.; SZCZEPANSKA, N.; GUARDIA, M. D. L.; NAMIESNIK, J. Miniaturized solid-phase extraction techniques. Trends in Analytical Chemistry, v. 73, p. 19–38, 2015.
[3] PAWLISZYN, J. Solid Phase Microextraction: Theory and Practice, Wiley-VCH, New York, 1997.
[4] KATAOKA, H.; ISHIZAKI, A.; NONAKA, Y.; SAITO, K. Developments and applications of capillary microextraction techniques: A review. Analytica Chimica Acta, v. 655, p. 8–29, 2009.
[5] KATAOKA, H. News trends in sample preparation for clinical and pharmacological analysis. Trends in Analytical Chemistry, v. 22, p. 232-244, 2003.
[6] DENG, C.; LIU, N.; GAO, M.; ZHANG, X. Recent developments in sample preparation techniques for chromatography analysis of tradicional Chinese medicines. Journal of Chromatography A, v. 1153, p. 90-96, 2007.
[7] FONTANALS, N.; MARCE, R. M.; BORRULL, F. New materials in sorptive extraction techniques for polar compounds. Journal of Chromatography A, v. 1152, p. 14-31, 2007.
[8] PUIG, P.; BORRULL, F.; CALULL, M.; AGUILAR, C. Sorbent preconcentration procedures coupled to capillary electrophoresis for environmental and biological applications. Analytica Chimica Acta, v. 616, p. 1–18, 2008.
[9] ARTHUR, C. L.; PAWLISZYN, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, v. 62, p. 2145–2148, 1990.
[10] KATAOKA, SAITO, K. Recent advances in SPME techniques in biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, v. 54, p. 926-950, 2011.
[11] QUEIROZ, M. E. C.; LANÇAS, F. M. Análise de fármacos em material biológico: Acoplamento Microextração em Fase Sólida “no tubo” e Cromatografia Líquida de Alta Eficiência. Química Nova, v. 28, n. 5, p. 880-886, 2005.
[12] QUEIROZ, M. E. C.; MELO, L. P. Selective capillary coating material for in-tube solid phase microextraction coupled to liquid chromatography to determine drugs and biomarkers in biological samples: a review. Analytica Chimica Acta, v. 826, p. 1-11, 2014.
[13] CONTI, R.; FABBRI, D.; TORRI, C.; HORNUNG, A. At-line characterization of compounds evolved during biomass pyrolysis by solid-phase microextraction SPME-GC-MS. Microchemical Journal, v. 124, p. 36-44, 2015.
[14] SILVA, G. C.; SILVA, A. A. S.; SILVA, L. S. N.; GODOY, R. L. O.; NOGUEIRA, L. C.; QUITÉRIO, S. L.; RAICES, R. S. L. Method development by GC-ECD and HS-SPME-GC-MS for beer volatile analysis. Food Chemistry, v. 167, p. 71-77, 2015.
[15] BENET, IU.; GUÀRDIA, M. D.; IBAÑEZ, C.; SOLÀ, J.; ARNAU, J.; ROURA, E. Analysis of SPME or SBSE extracted volatile compounds from cooked cured pork ham differing in intramuscular fat profiles. Food Science and Technology, v. 60, p. 393-399, 2015.
[16] ROMERO, I.; GARCÍA-GONZÁLEZ, D. L.; APARICIO-RUIZ, R.; MORALES, M. T. Validation of SPME-GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defect. Talanta, v. 134, p. 394-401, 2015.
[17] BOYACI, E.; GORYNSKI, K.; RODRIGUEZ-LAFUENTE, A.; BOJKO, B.; PAWLISZYN, J. Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances. Analytica Chimica Acta, v. 809, p. 69-81, 2011.
[18] VALENTE, A. L. P.; AUGUSTO, F. Microextração por fase sólida. Química Nova, v. 23, n. 4. p. 523-530, 2000.
[19] PAN, J.; ZHANG, C.; ZHANG, Z.; LI, G. Review of online coupling of sample preparation techniques with liquid chromatography. Analytica Chimica Acta, v. 815, p. 1-15, 2014.
[20] PAWLISZYN, J. Theory of solid-phase microextraction. Journal of Chromatographic Science, v. 38, p. 270-278, 2000.
[21] COELHO, E.; FERREIRA, C.; ALMEIDA, C. M. M. Analysis of polynuclear aromatic hydrocarbons by SPME-GC-FID in environmental an tap water. Journal of the Brazilian Chemical Society, v. 19, p. 1084-1097, 2008.
[22] KNOW, T. Y.; PARK, J. S.; JUNG, M. Y. Headspace- solid phase microextraction gas chromatography – tandem mass spectrometry (HS-SPME-GC-MS2) Method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils. Journal of Agricultural and Food Chemistry, v. 61, p. 8514-8523, 2013.
[23] MOREIRA, M. A.; ANDRÉ, L. C.; CARDEAL, Z. L. Analysis of plasticiser migration to meat roasted in plastic bags by SPME-GC/MS. Food Chemistry, v. 178, p. 195-200, 2015.
[24] SIGMA-ALDRICH. Selection guide for Supelco SPME fibers. Disponível em: . Acesso em 11/08/2015.
[25] LORD, H.; PAWLISZYN, J. Evolution of solid-phase microextraction technology. Journal of Chromatography A, v. 885, p. 153-193, 2000.
[26] MIZUNO, K.; KATAOKA, H. Analysis of urinary 8-isoprostane as an oxidative stress biomarker by stable isotope dilution using automated online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, v. 112, p. 36–42, 2015.
[27] AHMADI, S. H.; MANBOHI, A.; HEYDAR, K. T. Electrochemically controlled in-tube solid phase microextraction of naproxen from urine samples using an experimental design. Analyst, v. 140, p. 497–505, 2015.
[28] SUN, M.; FENG, J.; BU, Y.; LUO C. Highly sensitive copper fiber-in-tube solid-phase microextraction for online selective analysis of polycyclic aromatic hydrocarbons coupled with high performance liquid chromatography. Journal of Chromatography A, v. 1408, p. 41–48, 2015.
[29] WANG, X.; LI, X.; LI, Z.; ZHANG, Y.; BAI, Y.; LIU, H. Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Analytical Chemistry, v. 86, p. 4739–4747, 2014.
[30] PRIETO-BLANCO, M. C.; MOLINER-MARTINEZ, Y.; CAMPÍNS-FALCÓ, P. Combining poly(dimethyldiphenylsiloxane) and nitrile phases for improving the separation and quantification of benzalkonium chloride homologues: In-tube solid phase microextraction-capillary liquid chromatography-diode array detection-mass spectrometry for analyzing industrial samples. Journal of Chromatography A, v. 1297, p. 226–230, 2013.
[31] KATAOKA, H. Automated sample preparation using in-tube solid-phase microextraction and its application – a review. Analytical and Bioanalytical Chemistry, v. 373, p. 31–45, 2002.
[32] QUEIROZ, M. E. C. Microextração em fase sólida no capilar (in-tube SPME) para automação das análises de fármacos em fluidos biológicos. Scientia Chromatographica, v. 1, p. 1–9, 2009.
[33] VITTA, Y.; MOLINER-MARTINEZ, Y.; CAMPINS-FALCO, P.; CUERVO, A. F. An in-tube SPME device for the selective determination of chlorophyll a in aquatic systems. Talanta, v. 82, p. 952–956, 2010.
[34] QUEIROZ, M. E. C.; MELO, L. P. Recentes avanços da in-tube SPME-LC para bioanálises. Scientia Chromatographica, v. 5, p. 167-179, 2013.
[35] LIN, Z.; LIN, Y.; SUN, X.; YANG, H.; ZHANG, L.; CHEN, G. One-pot preparation of a molecularly imprinted hybrid monolithic capillary column for selective recognition and capture of lysozyme. Journal of Chromatography A, v. 1284, p. 8-16, 2013.
[36] SAITO, K.; YAGI, K.; ISHIZAKI, A.; KATAOKA, H. Determination of anabolic steroids in human urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, v. 52, p. 727-733, 2010.
[37] SILVA, B. J. G.; LANÇAS, F. M.; QUEIROZ, M. E. C. Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection. Journal of Chromatography A, v. 1216, p. 8590-8597, 2009.
[38] ASIABI, H.; YAMINI, Y.; REZAEI, F.; SEIDI, S. Nanostructered polypyrrole for automated and electrochemically controlled in-tube solid-phase microextraction of cationic nitrogen compounds. Microchimica Acta, v. 182, p. 1941-1948, 2015.
[39] AHMADI, S. H.; MANBOHI, A.; HEYDAR, K. T. Electrochemically controlled in-tube solid phase microextraction. Analytica Chimica Acta, v. 853, p. 335-341, 2015.
[40] BELTRAN, A.; BORRULL, F.; CORMACK, P.A.G.; MARCE, R.M. Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends in Analytical Chemistry, v. 29, p. 1363-1375, 2010.
[41] SANTOS, M. G.; ABRÃO, L. C. C.; FREITAS, L. A. S.; MORAES, G. O. I.; LIMA, M. M.; FIGUEIREDO, E. C. Emprego de polímeros de impressão molecular em preparo de amostras para análise de compostos orgânicos: aplicações e tendências. Scientia Chromatographica, v. 4, p. 161-195, 2012.
[42] TANG, Y.; LAN, J.; GAO, X.; LIU, X.; ZHANG, D.; WEI, L.; GAO, Z.; LI, J. Determination of clenbuterol in pork and potable water samples by moleculary imprinted polymer through the use of covalent imprinting method. Food Chemistry, v. 190, p. 952-959, 2016.
[43] POMA, A.; TURNER, A. P. F.; PILETSKY, S. A. Advances in the manufacture of MIP nanoparticles. Trends in Biotechnology, v. 28, p. 629-637, 2010.
[44] BOMPART, M.; GOTO, A.; WATTRAINT, O.; SARAZIN, C.; TSUJII, Y.; GONZATO, C.; HAUPT, K. Moleculary imprinted polymers by reversible chain transfer catalyzed polymerization. Polymer, v. 78, p. 31-36, 2015.
[45] SARAFRAZ-YAZDI, A.; RAVAZI, N. Application of molecular-imprinted polymers in solid-phase microextraction techniques. Trends in Analytical Chemistry, v. 73, p. 81-90, 2015.
[46] ZHENG, M. M.; RUAN, G. D.; FENG, Y. Q. Evaluating polymer monolith in-tube solid phase microextraction coupled to liquid chromatography/quadrupole time of flight mass spectrometry for reliable quantification and confirmation of quinolone antibacterials in edible animal food. Journal of Chromatography A, v. 1216, p. 7510-7519, 2009.
[47] LIU, W.L.; LIRIO, S.; YANG, Y.; WU, L.T.; HSIAO, S.Y.; HUANG, H.T. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyltrimethylammonium chloride) monolithic column for solid-phase microextraction. Journal of Chromatography A, v. 1395, p. 32-40, 2015.
[48] CURRIVAN, S.; MACAK, J.M.; JANDERA, P. Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization. Journal of Chromatography A, v. 1402, p. 82-93, 2015.
[49] HORMANN, K.; TALLAREK, U. Mass transport properties of second-generation silica monoliths with mean mesopore size from to 5 to 25 nm. Journal of Chromatography A, v. 1365, p. 94-105, 2014.
[50] VONK, R.J.; VAAST, A.; EELTINK, S.; SCHOENMAKERS, P.J. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography. Journal of Chromatography A, v. 1359, p. 162-169, 2014.
[51] MOLINER-MARTÍNEZ, Y.; MOLINS-LEGUA, C.; VERDÚ-ANDRÉS, J.; HERRÁEZ-HERNÁNDEZ, R.; CAMPÍNS-FALCÓ, P. Advantages of monolithic over particulate columns for multiresidue analysis of organic pollutants by in-tube solid-phase microextraction coupled to capillary liquid chromatography. Journal of Chromatography A, v. 1218, p. 6256-6262, 2011.
[52] ZHENG, M. M.; WANG, S. T.; HU, W. K.; FENG, Y. Q. In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatography-mass spectrometry for automated analysis of ten antidepressants in human urine and plasma. Journal of Chromatography A, v. 1217, p. 7493-7501, 2010.
[53] MULLET, W. M., MARTIN, P.; PAWLISZYN, J. In-tube moleculary imprinted polymer solid-phase microextraction for the selective determination of propranolol. Analytical Chemistry, v.73, p. 2383-2389, 2001.
[54] WANGA, F.; GUAN, Y.; ZHANG, S.; XIA, Y. Hydrophilic modification of silica-titania mesoporous materials as restricted-access matrix adsorbents for enrichment of phosphopeptides. Journal of Chromatography A, v. 1246, p. 76-83, 2012.
[55] HE, J.; SONG, L.; CHEN, S.; LI, Y.; WEI, H.; ZHAO, D.; GU, K.; ZHANG, S. Novel restricted access materials combined to moleculary imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey. Food Chemistry, v. 187, p. 331-337, 2015.
[56] LIMA, M. M.; VIEIRA, A. C.; MARTINS, I.; BORALLI, V. B.; BORGES, K. B.; FIGUEIREDO, E. C. On-line restricted access molecular imprinted solid phase extraction of ivermectin in meat samples followed by HPLC-UV analysis. Food Chemistry, v. 197, p. 7-13, 2016.
[57] AUFARTOVÁ, J.; TORRES-PADRÓN, M. E.; SOSA-FERRERA, Z.; SOLICH, P.; SANTANA-RODRÍGUEZ, J. J. Optimization of an in-tube solid phase microextraction mehtod coupled with HPLC for determination of some oestrogens in environmental liquid samples using different capillary columns. International Journal of Environmental Analytical Chemistry, v. 92, p. 382-396, 2012.
[58] MASIÁA, A.; MOLINER-MARTINEZ, Y.; MUNOZ-ORTU, M.; PICOA, Y.; CAMPÍNS-FALCÓ. Multiresidue analysis of organic pollutants by in-tube solid phase microextraction coupled to ultra-high performance liquid chromatography-electrospray-tandem mass spectrometry. Journal of Chromatography A, v. 1306, p. 1-11, 2013.
[59] ZHANG, W.; ZHANG, J.; BAO, T.; ZHOU, W.; MENG, J.; CHEN, Z. Universal multilayer assemblies of graphene in chemically resistant microtubes for microextraction. Analyitcal Chemistry, v. 85, p. 6846-6854, 2013
[60] MUÑOZ-ORTUÑO, M.; ARGENTE-GARCÍA, A.; MOLINER-MARTÍNEZ, Y.; VERDÚ-ANDRÉS, J.; HERRAÉZ-HERNÁNDEZ, R.; PICHER, M. T.; CAMPÍNS-FALCÓ, A. A cost-effective method for estimating di(2-ethylhexyl)phthalate in coastal sediments. Journal of Chromatography A, v. 1324, p. 57-62, 2014.
[61] MOLINER-MARTINEZ, Y.; VITTA, Y.; PRIMA-GARCIA, H.; GONZÁLEZ-FUENZALIDA, R. A.; RIBERA, A.; CAMPÍNS-FALCO, P.; CORONADO, E. Silica supported Fe3O4 magnetic nanoparticles for magnetic solid-phase extraction and magnetic in-tube solid-phase microextraction: application to organophosphorous compounds. Analytical and Bioanalytical Chemistry, v. 406, p. 2211-2215, 2014.
[62] SUN, M.; FENG, J.; BU, Y.; LUO, C. Highly sensitive copper fiber-in-tube solid-phase microextraction for online selective analysis of polycyclic aromatic hydrocarbons coupled with high performance liquid chromatography. Journal of Chromatography A, v. 1408, p. 41-48, 2015.
[63] MOLINER-MARTÍNEZ, Y.; SERRA-MORA, P.; VERDÚ-ANDRÉS, J.; HERRÁEZ-HERNÁNDEZ, R.; CAMPÍNS-FALCÓ, P. Analysis of polar triazines and degradation products in waters by in-tube solid-phase microextraction and capillary chromatography: an environmentally friendly method. Analytical and Bioanalytical Chemistry, v. 407, p. 1485-1497, 2015.
[64] SAITO, K.; IKEUCHI, R.; KATAOKA, H. Determination of ochratoxins in nuts and grain samples by in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. Journal of Chromatography A, v. 1220, p. 1-6, 2012.
[65] WU, J.; XIE, W.; PAWLISZYN, J. Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. The Analyst, v. 125, p. 2116-2222, 2000.
[66] WANG, T. T.; CHEN, Y. H.; MA, J. F.; HU, M. J.; LI, Y.; FANG, J. H.; GAO, H. Q. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additivies. Analytical and Bioanalytical Chemistry, v. 406, p. 4955-4963, 2014.
[67] ISHIZAKI, A.; SAITOA, K.; HANIOKA, N.; NARIMATSUB, S.; KATAOKA, H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. Journal of Chromatography A, v. 1217, p. 5555-5563, 2010.
[68] KATAOKA, H.; ITANO, M.; ISHIZAKI, A.; SAITO, K. Determination of patulin in fruit juice and dried fruit samples by in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry. Journal of Chromatography A, v. 1216, p. 3746-3750, 2009.
[69] WEN, Y.; WANG, Y.; FENG, Y. Q. Simultaneous residue monitoring of four tetracycline antibiotics in fish muscle by in-tube solid-phase microextraction coupled with high-performance liquid chromatograhy. Talanta, v. 70, p. 153-159, 2006.
[70] ZHANG, J.; ZHANG, W.; BAO, T.; CHEN, Z. Polydopamine-based immobilization of zeolitic imidazolate framework-8 for in-tube solid-phase microextraction. Journal of Chromatography A, v. 1388, p. 9-16, 2015.
[71] SUN, M.; FENG, J.; BU, Y.; LUO, C. Nanostructured-silver-coated polyetheretherketone tube for online in-tube solid-phase microextraction coupled with high-performance liquid chromatography. Journal of Separation Science, v. 38, p. 1-8, 2015.
[72] AUFARTOVÁ, J.; PADRÓN, M. E. T.; FERRERA, Z. S.; NOVÁKOVÁ, L.; SOLICH, P.; RODRÍGUEZ, J. J. S. Development of a novel in-tube solid phase microextraction based on micellar desorption followed by LC-DAD-FD for the determination of some endocrine disruptor compounds in environmental liquid samples. Journal of Liquid Chromatography & Related Technologies, v. 37, p. 1654-1672, 2014.
[73] ZAREJOUSHEGHANI, M.; MODER, M.; BORSDORF, H. A new strategy for synthesis of an in-tube moleculary imprinted polymer-solid phase microextraction device: Selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples. Analytica Chimica Acta, v. 798, p. 48-55, 2013.
[74] SEGRO, S. S.; MALIK, A. Sol-gel methyl coating in capillary microextraction hyphenated on-line with high-performance liquid chromatography Counterintuitive extraction behavior for polar analytes. Journal of Chromatography A, v. 1200, p. 62-71, 2008.
[75] SEGRO, S. S.; MALIK, A. Solvent-resistant sol-gel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. Journal of Chromaotgraphy A, v. 1205, p. 26-35, 2008.
[76] FENG. J.; SUN, M.; BU, Y.; LUO, C. Development of a cheap and accessible carbon fibers-in-poly (ether ether ketone) tube with high stability for online in-tube solid-phase microextraction. Talanta, v. 1205, p. 26-35, 2008.
[77] SAITO, K.; UEMURA, E.; ISHIZAKI, A.; KATAOKA, H. Determination of perfluorooctanoic acid and perfluorooctane sulfonate by automated in-tube solid-phase microextraction coupled with chromatography-mass spectrometry. Journal of Chromatography A, v. 148, p. 313-320, 2016.
[78] KATOKA, H.; SHIBA, H.; SAITO, K. Automated analysis of oseltamivir and oseltamivir carboxylate in environmental waters by online in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Analytical Methods, v. 4, p. 1513-1518, 2012.
[79] PLA-TOLÓS, J.; MOLINER-MARTÍNEZ, Y.; MOLINS-LEGUA, C.; HERRÁEZ-HERNÁNDEZ, R.; VERDÚ-ANDRÉS, J.; CAMPÍNS-FALCÓ, P. Selective and sensitive method based on capillary liquid chromatography with in-tube solid-phase microextraction for determination of monochloramine in water. Journal of Chromatography A, v. 1388, p. 17-23, 2015.
[80] PRIETO-BLANCO, M. C.; MOLINER-MARTÍNEZ, Y.; LÓPEZ-MAHÍA, P.; CAMPÍNS-FALCÓ, P. Determination of carbonyl compounds in particulate matter PM2.5 by in-tube solid-phase microextraction coupled to capillary liquid chromatography/mass spectrometry. Talanta, v. 115, p. 876-880, 2013.
[81] GONZALEZ-FUENZALIDA, R. A.; MOLINER-MARTINEZ, Y.; PRIMA-GARCIA, H.; RIBERA, A.; CAMPINS-FALCO, P.; ZARAGOZA, R. J. Evaluation of superparamagnetic sílica nanoparticles for extraction of triazines in magnetic in-tube solid phase microextraction coupled to capillary liquid chromatography. Nanomaterials, v. 4, p. 242-255, 2014.
[82] MOLINER-MARTINEZ, Y.; HERRAEZ-HERNANDEZ, R.; MOLINS-LEGUA, C.; CAMPINS-FALCO, P. Improving analysis of apolar organic compounds by the use of a capillary titania-based column: Application to the direct determination of faecal sterols cholesterol and coprostanol in wastewater samples. Journal of Chromatography A, v. 1217, p. 4682-4687, 2010.
[83] NONAKA, Y.; SAITO, K.; HANIOKA, N.; NARIMATSU, S.; KATAOKA, H. Determination of aflatoxicins in food sample by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal of Chromatography A, v. 1216, p. 4416-4422, 2009.
[84] YU, Q. W.; MA, Q.; FENG, Y. Q. Temperature-response polymer coating for in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Talanta, v. 1216, p. 1019-1025, 2011.
[85] ASIABI, H.; YAMINI, Y.; SEIDI, S.; ESRAFILI, A.; REZAEI, F. Electroplating of nanostructured polyaniline-polypyrrole composite coating in a stainless-steel for on-line in-tube solid phase microextraction. Journal of Chromatography A, v. 1397, p. 19-26, 2015.