http://dx.doi.org/10.4322/sc.2016.015

 

A importância do software na análise dos resultados em GC×GC: estudo comparativo dos softwares GCImageTM e ChromaTOFTM

Schneider, Jaderson K.; Cunha, Michele E. da; Brasil, Márcia C.; Machado, Maria E.; Jacques, Rosângela A.; Caramão, Elina B.

Palavras-chave ChromaTOFTM, GCImageTM, tratamento de dados, comparação de softwares.

Resumo A cromatografia gasosa bidimensional abrangente (GC×GC) é uma técnica que permite a separação e identificação de compostos com desempenho superior à cromatografia gasosa monodimensional (1D-GC). A GC×GC gera um número considerável de dados, os quais precisam de uma potente ferramenta computacional para a correta identificação dos compostos. Neste contexto, o uso de softwares adequados e altamente especializados se torna o coração da análise. Este trabalho objetivou comparar a eficiência de dois diferentes softwares, ChromaTOFTM e GCImageTM na identificação de compostos presentes em uma amostra de bio-óleo de palha de cana-de-açúcar analisado em um sistema GC×GC/TOFMS. O tratamento de dados no ChromaTOFTM foi realizado fornecendo as seguintes condições, largura de pico na 1D: 10 s; largura de pico na 2D: 0,2 s; razão sinal/ruído: 3 e intervalo de massas: 40-550 u.m.a. Para o tratamento da mesma amostra no GCImageTM, foi necessário informar apenas o período de modulação, que foi 10 s. Em ambos os softwares empregou-se a biblioteca NIST MS Search versão 2.0. O total de compostos tentativamente identificados foi de 324 aplicando o ChromaTOFTM e de 271 aplicando o GCImageTM. A diferença de 53 compostos pode ser atribuída principalmente à ferramenta de deconvolução espectral presente no software ChromaTOFTM, a qual é realizada automaticamente no processamento com este software e, manualmente, por opção do operador, no GCImageTM. O ChromaTOFTM identificou um número maior de compostos pertencentes as classes de cetonas e açúcares, em grande parte, identificados por deconvolução espectral. A partir do estudo comparativo pode-se concluir que a identificação de dados obtidos em um GC×GC/TOFMS deve ser realizada no software ChromaTOFTM para um resultado mais preciso, entretanto, quando o objetivo do trabalho for uma caracterização geral da amostra, pode-se empregar o GCImageTM.


Referências Bibliográficas

[1] Morali U, Sensoz S. Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: Characterization of bio-oil and bio-char. Fuel. 2015; 150: 672-678.
[2] Mota CJA, Monteiro RS. Química e sustentabilidade: novas fronteiras em biocombustíveis. Química Nova. 2013; 36 (10): 1483-1490.
[3] Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable and Sustainable Energy Reviews. 2008; 12: 504-517.
[4] Acikgoz C, Kochar OM. Characterization of slow pyrolysis oil obtained from linseed (Linum usitatissimum L.). Journal of Analytical and Applied Pyrolysis. 2009; 85: 151-154.
[5] Stephanidis S, Nitsos C. Kalogiannis EF, Lappas AA, Triantafullidis KS. Catalytic upgrading of lignocellulosic biomass pyrolysisvapours: Effect of hydrothermal pre-treatment of biomass. Catalysis Today. 2011; 167: 37-45.
[6] Shen DK, Luo KH, Wang SR, Fang MX. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource Technology. 2010; 101: 6136-6146.
[7] Mushtaq F, Abdulah TAT, Mat R, Ani FN. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresource Technology. 2015; 190: 442-450
[8] Yang Z, Kumar A, Huhnke RL. Review of recent developments to improve storage and transportation stability of bio-oil. Renewable and Sustainable Energy Reviews. 2015; 50: 859-870.
[9] Stedile T, Ender L, Meier HF, Simionatto EL, Wiggers VR. Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources. Renewable and Sustainable Energy Reviews. 2015; 50: 92-108.
[10] Moraes MSA, Georges F, Almeida SR, Damasceno FC, Maciel GPS, Zini CA, Jacques RA, Caramão EB. Analysis of products from pyrolysis of Brazilian sugar cane straw. Fuel Processing Technology. 2012; 101: 35-43.
[11] Oasmaa A, Kuoppala E, Solantausta Y. Fast Pyrolysis of Forestry Residue. 2. Physicochemical composition of product liquid. Energy and Fuel. 2003; 17: 433-443.
[12] Özbay N, Apaydın-Varol E, Uzun EB, Pütün AE. Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy. 2008; 33: 1233-1240.
[13] Cao JP, Xiao XB, Zhang SY, Zhao XY, Sato K, Ogawa Y, Wei, XY, Takarada T. Bioresource Technology. 2011; 102: 2009-2015.
[14] Czernik S, Bridgwater AV. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels. 2004; 18: 590-598.
[15] Busetto L, Fabbri D, Mazzoni R, Salmi M, Torri C, Zanotti, V. Application of the Shvo Catalyst in Homogeneous Hydrogenation of Bio-oil Obtained from Pyrolysis of white Poplar: New Mild Upgrading Conditions. Fuel. 2011; 90: 1197-1207.
[16] Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C. Characterization of Bio-oils in Chemical Families. Biomass and Bioenergy. 2007; 31: 222-242.
[17] Undri A, Aboud-Zaid M, Briens C, Berruti F, Rosi L, Bartoli M, Frediani M, Frediani P. A simple procedure for chromatographic analysis of bio-oils from pyrolysis. Journal of Analytical and Applied Pyrolysis. 2015; 114: 208-221.
[18] Wang G, Li W, Li BQ, Chen HK. TG study on pyrolysis of biomass and it three components under syngas. Fuel. 2008; 87: 552-558.
[19] Lu R, Sheng G, Hu Y, Zheng P, Jiang H, Tang Y, Yu H. Fractional characterization of a bio-oil derived from rice husk. Biomass and Bioenergy. 2011; 35: 671-678.
[20] Wisniewski AJ, Wiggers VR, Simionato EL, Meier HF, Barros AAC, Madureira LAS. Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel. 2010; 89: 563-568.
[21] Cao J, Zhao X, Morishita K, Wei X, Takarada T. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge. Bioresource Technology. 2010; 101: 7648-7652.
[22] Miranda R, Bustos-Martinez D, Blanco CS, Villarreal MHG, Cantú MER, Pyrolysis of sweet orange (Citrus sinensis) dry peel. Journal of Analytical Applied Pyrolysis 2009; 86: 245-251.
[23] Patel RN, Bandyopadhyay S, Ganesh A. Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy. 2011; 36: 1535-1542.
[24] Mahinpey N, Murugan P, Mani T, Raina R. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor. Energy & Fuels. 2009; 23: 2736-2742.
[25] Guo X, Wang S, Guo Z, Liu Q, Luo Z, Cen K. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Applied Energy. 2010; 87: 2892-2898.
[26] Li J, Wang C, Yang Z. Production and separation of phenols from biomass-derived bio-petroleum. Journal of Analytical Applied Pyrolysis. 2010; 89: 218-224.
[27] Özçimen D, Ersoy-Meriçboyu A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy. 2010; 35: 1319-1324.
[28] von Muhlen C, Zini CA, Caramão EB, Marriot PJ. Caracterização de amostras petroquímicas e derivados utilizando cromatografia gasosa bidimensional abrangente (GC×GC). Química Nova. 2006; 29 (4): 765-775.
[29] Trevisan MG, Poppi RJ, Química Analítica de processos. Química Nova. 2006; 29 (5): 1065-1071.
[30] Liu ZY, Phillips J. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. Journal of Chromatographic Science. 1991; 29: 227-231.
[31] Murray JA. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. Journal of Chromatography A. 2012;1261: 58-68.
[32] da Cunha ME, Schneider JK, Brasil MC, Cardoso CA, Monteiro LR, Mendes FL, Pinho A, Jacques RA, Machado ME, Freitas LS, Caramão EB. Analysis of fractions and bio-oil of sugar cane straw by one-dimensional and two-dimensional gas chromatography with quadrupole mass spectrometry (GC × GC/qMS). Microchemical Journal. 2013; 110: 113-119.
[33] Marsman JH, Wildschut J, Mahfud F, Heerers HJ. Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection. Journal of Chromatography A. 2007; 1150: 21-27.
[34] Marsman JH, Wildschut J, Evers P, de Koning S, Heerers HJ. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. Journal of Chromatography A. 2008; 1188: 17-25.
[35] Schneider JK, da Cunha ME, dos Santos AL, Maciel GPS, Brasil MC, Pinho AR, Mendes FL, Jacques RA, Caramão EB. Comprehensive two dimensional gas chromatography with fast-quadrupole mass spectrometry detector analysis of polar compounds extracted from the bio-oil from the pyrolysis of sawdust. Journal of Chromatography A. 2014; 1356: 236–240.
[36] Moraes MSA, Zini CA, Gomes CB, Bortoluzzi JH, von Mühlen C, Caramão EB. Uso da cromatografia gasosa bidimensional abrangente (GC×GC) na caracterização de misturas biodiesel/diesel: aplicação ao biodiesel de sebo bovino. Química Nova. 2011; 34 (7): 1188-1192.
[37] Wang Y, Chen Q, Norwood DL, McCaffrey J. Recent Development in the Applications of Comprehensive Two-Dimendional Gas Chromatograph. Journal of Liquid Chromatography & Related Technologies. 2010; 33: 1082-1115.
[38] Dallüge J, Beens J, Brinkman UAT. Comprehensive Two-dimensional Gas Chromatography: a Powerful and Versatile Analytical Tool, Journal of Chromatography A. 2003; 1000: 69-108.
[39] Cortes HJ, Winniford B, Luong J, Pursch M. Comprehensive Two Dimensional Gas Chromatography Review. Journal of Separation Sciences. 2009; 32: 883-904.