http://dx.doi.org/10.4322/sc.2016.035

Separação de esteróides por cromatografia líquida capilar programada por temperatura usando coluna de sílica fundida empacotada

Monteiroa, Alessandra Maffei; Coutinhoa, Lincoln Figueira Marins; Nazariob, Carlos Eduardo Domingues; Lanças, Fernando Mauro

Palavras-chave: cromatografia líquida capilar, programação de temperatura, esteróides.

Resumo: A miniaturização da cromatografia líquida e o desenvolvimento de colunas capilares de sílica fundida empacotadas com a fase estacionária possibilitaram a rápida e homogênea transferencia de calor na coluna analítica. Desta forma, o uso da programação de temperatura ao invés do gradiente de fase móvel torna-se uma alternativa para diminuir o tempo de análise. Este trabalho relata a aplicabilidade de um método analítico para a separação de cinco esteróides utilizando cromatografia líquida capilar com programação de temperatura. A influência da temperatura na retenção dos analitos foi investigada e discutida. Os esteróides foram separados uma coluna capilar lab-made (RP-18) utilizando eluição isocrática. A programação de temperatura permitiu a redução do tempo de análise em duas vezes e diminuiu a dispersão da banda cromatográfica do composto mais retido em comparação com análises em condições isotérmica.


Referências Bibliográficas

[1] Gritti F. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography I- A theoretical investigation. J Chromatogr A. 2016; in press; doi:10.1016/j.chroma.2016.09.026.
[2] Wilson RE, Groskreutz SR, Weber SG. Improving the Sensitivity, Resolution, and Peak Capacity of Gradient Elution in Capillary Liquid Chromatography with Large-Volume Injections by Using Temperature-Assisted On-Column Solute Focusing. Anal Chem. 2016;88(10):5112–21.
[3] Weed A-MK, Dvornik J, Stefancin JJ, Gyapong AA, Svec F, Zajickova Z. Photopolymerized organo-silica hybrid monolithic columns: Characterization of their performance in capillary liquid chromatography. J Sep Sci. 2013;36(2):270–8.
[4] Fanali C, Dugo L, Dugo P, Mondello L. Capillary-liquid chromatography (CLC) and nano-LC in food analysis. Trends Anal Chem. 2013;52(0):226–38.
[5] Strain HH. Conditions affecting the sequence of organic compounds in tswett adsorption columns. Ind Eng Chem. 1946;18(10):605–9.
[6] Hesse G, Engelhardt H. Temperaturprogrammierung bei der adsorptionschromatographie von lösungen. J Chromatogr A. 1966;21(C):228–38.
[7] Takeuchi T, Watanabe Y, Ishii D. Role of column temperature in micro high performance liquid chromatography. J High Resolut Chromatogr. 1981;4(6):300–2.
[8] Thompson JD, Carr PW. A study of the critical criteria for analyte stability in high-temperature liquid chromatography. Anal Chem. 2002;74(5):1017–23.
[9] Wiese S, Teutenberg T, Schmidt TC. General Strategy for Performing Temperature Programming in High Performance Liquid Chromatography: Prediction of Linear Temperature Gradients. Anal Chem. 2011;83(6):2227–33.
[10] Sanagi MM, See HH, Ibrahim W, Naim A. High Temperature Liquid Chromatography of Tocol-Derivatives on PolybutadieneCoated Zirconia Stationary Phases. Chromatographia. 2005;61(11–12):567–71.
[11] Groskreutz SR, Horner AR, Weber SG. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing. J Chromatogr A. 2015;1405:133–9.
[12] Vanhoenacker G, Sandra P. Elevated temperature and temperature programming in conventional liquid chromatography – Fundamentals and applications. J Sep Sci. 2006;29(12):1822–35.
[13] Greibrokk T, Andersen T. Temperature programming in liquid chromatography. J Sep Sci. 2001;24(12):899–909.
[14] Holland BJ, Conlan XA, Francis PS, Barnett NW, Stevenson PG. Overcoming solvent mismatch limitations in 2D-HPLC with temperature programming of isocratic mobile phases. Anal Methods. 2016;8(6):1293–8.
[15] Cheruthazhekatt S, Harding GW, Pasch H. Comprehensive high temperature two-dimensional liquid chromatography combined with high temperature gradient chromatography-infrared spectroscopy for the analysis of impact polypropylene copolymers. J Chromatogr A. 2013;1286:69–82.
[16] Jensen DS, Teutenberg T, Clark J, Linford MR. Elevated temperatures in liquid chromatography, Part I: Benefits and practical considerations. LCGC North Am. 2012;30(9):850–62.
[17] Guillarme D, Rudaz S, Schelling C, Dreux M, Veuthey JL. Micro liquid chromatography coupled with evaporative light scattering detector at ambient and high temperature: Optimization of the nebulization cell geometry. J Chromatogr A. 2008;1192(1):103–12.
[18] Al-Khateeb L, Smith R. High-temperature liquid chromatography of steroids on a bonded hybrid column. Anal Bioanal Chem. 2009;394(5):1255–60.
[19] Coutinho LFM, Nazario CED, Monteiro AM, Lanças FM. Novel devices for solvent delivery and temperature programming designed for capillary liquid chromatography. J Sep Sci. 2014;37(15):1903–10.
[20] Lanças FM, Rodrigues JC, de S. Freitas S. Preparation and use of packed capillary columns in chromatographic and related techniques. J Sep Sci. 2004;27(17–18):1475–82.
[21] Jensen DS, Teutenberg T, Clark J, Linford MR. Elevated temperatures in liquid chromatography, part III: A closer look at the van ’t Hoff equation. LCGC North Am. 2012;30(12):1052–7.