http://dx.doi.org/10.4322/sc.2017.010

 

Avanços recentes na miniaturização de colunas para cromatografia líquida

Leal, Vivane Lopes; Silva, Meire Ribeiro da; Lanças, Fernando Mauro

Palavras-chave: Colunas miniaturizadas: monolítica, tubular aberta, empacotada, micro chip; cLC.

Resumo: Nas diversas técnicas cromatográficas, os avanços da instrumentação e da tecnologia de preparo de colunas têm conduzido, cada vez mais, a análises mais rápidas com aumento no poder de separação. Por sua vez, a miniaturização vem ganhando espaço e demonstrando ser uma tendência nesta área, nos últimos anos. No caso da cromatografia liquida miniaturizada as vantagens estão concentradas, principalmente, no menor consumo de amostra, sorvente e fase móvel, assim como na baixa vazão de fase móvel a qual eleva a relação sinal/ruído dos detectores sensíveis à concentração do analito sendo detectado. Neste contexto, ocorre a diminuição das dimensões das colunas, surgindo a necessidade de obter-se colunas com elevada eficiência o que, em conjunto com o sistema miniaturizado de cromatografia liquida, torna possível a exploração de diferentes tipos de colunas miniaturizadas como as microempacotadas, as monolíticas, tubulares abertas e as colunas preparadas no formato de microchips, as quais possuem ótimo potencial para serem exploradas em cromatografia líquida tanto em escala micro (micro-LC) quanto em escala nano (nano- LC). Essas colunas serão descritas e avaliadas no presente trabalho.


Referências Bibliográficas

[1] Y. Saito, K. Jinno, T. Greibrokk, Capillary columns in liquid chromatography: Between conventional columns and microchips, J. Sep. Sci. 27 (2004). doi:10.1002/jssc.200401902.
[2] K. Hibi, D. Ishii, I. Fujishima, T. Takeuchi, T. Nakanishi, Studies of open tubular micro capillary liquid chromatography. 1. The development of open tubular micro capillary liquid chromatography, J. High Resolut. Chromatogr. 1 (1978) 21–27. doi:10.1002/jhrc.1240010106.
[3] S. Fanali, An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography, Electrophoresis. (2017). doi:10.1002/elps.201600573.
[4] C.E.D. Nazario, M.R. Silva, M.S. Franco, F.M. Lanças, Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview, J. Chromatogr. A. 1421 (2015). doi:10.1016/j.chroma.2015.08.051.
[5] C.E.D. Nazario, B.H. Fumes, M.R. da Silva, F.M. Lanças, New materials for sample preparation techniques in bioanalysis, J. Chromatogr. B. (2016). doi:10.1016/j.jchromb.2016.10.041.
[6] F.M. Lanças, J.C. Rodrigues, S. deS. Freitas, Preparation and use of packed capillary columns in chromatographic and related techniques, J. Sep. Sci. 27 (2004). doi:10.1002/jssc.200401853.
[7] J.J. Kirkland, S.A. Schuster, W.L. Johnson, B.E. Boyes, Fused-core particle technology in high-performance liquid chromatography: An overview, J. Pharm. Anal. 3 (2013) 303–312. doi:10.1016/j.jpha.2013.02.005.
[8] C. Fanali, A. Rocco, Z. Aturki, L. Mondello, S. Fanali, Analysis of polyphenols and methylxantines in tea samples by means of nano-liquid chromatography utilizing capillary columns packed with core–shell particles, J. Chromatogr. A. 1234 (2012) 38–44. doi:10.1016/j.chroma.2011.12.103.
[9] M.R. da Silva, B.H. Fumes, C.E.D. Nazario, F.M. Lancas, New Materials for Green Sample Preparation: Recent Advances and Future Trends, 2017. doi:10.1016/bs.coac.2017.03.003.
[10] B.H. Fumes, M.R. Silva, F.N. Andrade, C.E.D. Nazario, F.M. Lanças, Recent advances and future trends in new materials for sample preparation, TrAC – Trends Anal. Chem. 71 (2015). doi:10.1016/j.trac.2015.04.011.
[11] J.C. Rodrigues, F.M. Lanças, Preparation of packed capillary columns using supercritical carbon dioxide on cyclone-type slurry reservoir, J. Chromatogr. A. 1090 (2005). doi:10.1016/j.chroma.2005.06.074.
[12] R.D. Arrua, T.J. Causon, E.F. Hilder, Recent developments and future possibilities for polymer monoliths in separation science, Analyst. 137 (2012) 5179. doi:10.1039/c2an35804b.
[13] F. Svec, Preparation and HPLC applications of rigid macroporous organic polymer monoliths, J. Sep. Sci. 27 (2004). doi:10.1002/jssc.200401721.
[14] A. Vaast, H. Terryn, F. Svec, S. Eeltink, Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides, J. Chromatogr. A. 1374 (2014) 171–179. doi:10.1016/j.chroma.2014.11.063.
[15] F. Svec, C.G. Huber, Monolithic Materials: Promises, Challenges, Achievements, Anal. Chem. 78 (2006) 2100–2107. doi:10.1021/ac069383v.
[16] A. Ghanem, T. Ikegami, N. Tanaka, New silica monolith bonded chiral (R)-γ butyrolactone for enantioselective micro high-performance liquid chromatography., Chirality. 23 (2011) 887–90. doi:10.1002/chir.21004.
[17] I. Nischang, O. Brüggemann, On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths., J. Chromatogr. A. 1217 (2010) 5389–97. doi:10.1016/j.chroma.2010.06.021.
[18] H. Zhao, Y. Wang, H. Cheng, Y. Shen, Graphene oxide decorated monolithic column as stationary phase for capillary electrochromatography, J. Chromatogr. A. 1452 (2016) 27–35. doi:10.1016/j.chroma.2016.05.001.
[19] F. Svec, Organic polymer monoliths as stationary phases for capillary HPLC, J. Sep. Sci. 27 (2004) 1419–1430. doi:10.1002/jssc.200401825.
[20] C. Aydoan, A new anion-exchange/hydrophobic monolith as stationary phase for nano liquid chromatography of small organic molecules and inorganic anions, J. Chromatogr. A. 1392 (2015) 63–68. doi:10.1016/j.chroma.2015.03.014.
[21] A. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta. 169 (2017). doi:10.1016/j.talanta.2016.06.027.
[22] S. Liu, J. Peng, H. Zhang, X. Li, Z. Liu, X. Kang, et al., Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography, J. Chromatogr. A. 1498 (2017). doi:10.1016/j.chroma.2017.03.067.
[23] M.R. Silva, F.N. Andrade, B.H. Fumes, F.M. Lanças, Unified chromatography: Fundamentals, instrumentation and applications†, J. Sep. Sci. 38 (2015) 3071–3083. doi:10.1002/jssc.201500130.
[24] W.M.A. Niessen, H.P.M. van Vliet, H. Poppe, Studies on external peak broadening in open-tubular liquid chromatography systems using the exponentially modified Gaussian model, Chromatographia. 20 (1985) 357–363. doi:10.1007/BF02269062.
[25] D. Ishii, T. Tsuda, T. Takeuchi, Studies of open-tubular micro-capillary liquid chromatography. IV. Soda-lime glass columns treated with alkaline solution, J. Chromatogr. A. 185 (1979). doi:10.1016/S0021-9673(00)85598-3.
[26] S. Forster, H. Kolmar, S. Altmaier, Performance evaluation of thick film open tubular silica capillary by reversed phase liquid chromatography, J. Chromatogr. A. 1283 (2013). doi:10.1016/j.chroma.2013.01.107.
[27] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules., Science. 246 (1989) 64–71.
[28] G. Yue, Q. Luo, J. Zhang, S.-L. Wu, B.L. Karger, Ultratrace LC/MS Proteomic Analysis Using 10-μm-i.d. Porous Layer Open Tubular Poly(styrene−divinylbenzene) Capillary Columns, Anal. Chem. 79 (2007) 938–946. doi:10.1021/ac061411m.
[29] M. Rogeberg, T. Vehus, L. Grutle, T. Greibrokk, S.R. Wilson, E. Lundanes, Separation optimization of long porous-layer open-tubular columns for nano-LC-MS of limited proteomic samples, J. Sep. Sci. 36 (2013) 2838–2847. doi:10.1002/jssc.201300499.
[30] S.R. Wilson, T. Vehus, H.S. Berg, E. Lundanes, Nano-LC in proteomics: recent advances and approaches, Bioanalysis. 7 (2015) 1799–1815. doi:10.4155/bio.15.92.
[31] M. Rogeberg, S.R. Wilson, T. Greibrokk, E. Lundanes, Separation of intact proteins on porous layer open tubular (PLOT) columns, J. Chromatogr. A. 1217 (2010) 2782–2786. doi:10.1016/j.chroma.2010.02.025.
[32] M. Rogeberg, H. Malerod, H. Roberg-Larsen, C. Aass, S.R. Wilson, On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems, J. Pharm. Biomed. Anal. 87 (2014) 120–129. doi:10.1016/j.jpba.2013.05.006.
[33] H.K. Hustoft, T. Vehus, O.K. Brandtzaeg, S. Krauss, T. Greibrokk, S.R. Wilson, et al., Open Tubular Lab-On-Column / Mass Spectrometry for Targeted Proteomics of Nanogram Sample Amounts, 9 (2014) 1–10. doi:10.1371/journal.pone.0106881.
[34] Q. Luo, Y. Gu, S.-L. Wu, T. Rejtar, B.L. Karger, Two-dimensional strong cation exchange/porous layer open tubular/mass spectrometry for ultratrace proteomic analysis using a 10 μm id poly(styrene- divinylbenzene) porous layer open tubular column with an on-line triphasic trapping column, Electrophoresis. 29 (2008) 1604–1611. doi:10.1002/elps.200700741.
[35] T. Vehus, H. Roberg-Larsen, J. Waaler, S. Aslaksen, S. Krauss, S.R. Wilson, et al., Versatile, sensitive liquid chromatography mass spectrometry – Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins, Sci. Rep. 6 (2016) 37507. doi:10.1038/srep37507.
[36] Q. Luo, G. Yue, G.A. Valaskovic, Y. Gu, S. Wu, B.L. Karger, On-Line 1D and 2D Porous Layer Open Tubular / LC-ESI-MS Using 10- μ m-i. d. Poly ( styrene – divinylbenzene ) Columns for Ultrasensitive Proteomic Analysis, Anal Chim Acta. (2007) 6549–6556.
[37] Q. Luo, T. Rejtar, S.-L. Wu, B.L. Karger, Hydrophilic interaction 10 μm I.D. porous layer open tubular columns for ultratrace glycan analysis by liquid chromatography-mass spectrometry, J. Chromatogr. A. 1216 (2009). doi:10.1016/j.chroma.2008.09.105.
[38] S. Forster, H. Kolmar, S. Altmaier, Preparation and kinetic performance assessment of thick film 10-20??m open tubular silica capillaries in normal phase high pressure liquid chromatography, J. Chromatogr. A. 1315 (2013) 127–134. doi:10.1016/j.chroma.2013.09.059.
[39] S. Forster, H. Kolmar, S. Altmaier, Synthesis and characterization of new generation open tubular silica capillaries for liquid chromatography, J. Chromatogr. A. 1265 (2012) 88–94. doi:10.1016/j.chroma.2012.09.054.
[40] J.P. Kutter, Liquid phase chromatography on microchips, J. Chromatogr. A. 1221 (2012) 72–82. doi:10.1016/j.chroma.2011.10.044.
[41] S. Jung, A. Höltzel, S. Ehlert, J.-A. Mora, K. Kraiczek, M. Dittmann, et al., Impact of Conduit Geometry on the Performance of Typical Particulate Microchip Packings, Anal. Chem. 81 (2009) 10193–10200. doi:10.1021/ac902069x.
[42] M. Kato, M. Inaba, T. Tsukahara, K. Mawatari, A. Hibara, T. Kitamori, Femto Liquid Chromatography with Attoliter Sample Separation in the Extended Nanospace Channel, Anal. Chem. 82 (2010) 543–547. doi:10.1021/ac9017605.
[43] L. SAINIEMI, T. NISSILA, V. JOKINEN, T. SIKANEN, T. KOTIAHO, R. KOSTIAINEN, et al., Fabrication and fluidic characterization of silicon micropillar array electrospray ionization chip, Sensors Actuators B Chem. 132 (2008) 380–387. doi:10.1016/j.snb.2007.09.077.
[44] P. Srinivas, P.M. Krishna, M. Sadanandam, Nano liquid chromatography in pharmaceutical analysis-A review, Int. J. Pharm. Sci. 2 (2010).
[45] L. Magrini, G. Famiglini, P. Palma, V. Termopoli, A. Cappiello, Boosting the Detection Potential of Liquid Chromatography-Electron Ionization Mass Spectrometry Using a Ceramic Coated Ion Source, J. Am. Soc. Mass Spectrom. 27 (2016) 153–160. doi:10.1007/s13361-015-1257-0.
[46] P. Palma, G. Famiglini, H. Trufelli, E. Pierini, V. Termopoli, A. Cappiello, Electron ionization in LC-MS: recent developments and applications of the direct-EI LC-MS interface, Anal. Bioanal. Chem. 399 (2011) 2683–2693. doi:10.1007/s00216-010-4637-0.
[47] A. Cappiello, F. Bruner, Micro flow rate particle beam interface for capillary liquid chromatography/mass spectrometry, Anal. Chem. 65 (1993) 1281–1287. doi:10.1021/ac00057a028.
[48] G. Yue, Q. Luo, J. Zhang, S. Wu, B.L. Karger, Ultratrace LC/MS Proteomic Analysis Using 10-μm-i.d. Porous Layer Open Tubular Poly(styrene−divinylbenzene) Capillary Columns, Anal. Chem. 79 (2007) 938–946. doi:10.1021/ac061411m.
[49] T. Hetzel, C. vom Eyser, J. Tuerk, T. Teutenberg, T.C. Schmidt, Micro-liquid chromatography mass spectrometry for the analysis of antineoplastic drugs from wipe samples, Anal. Bioanal. Chem. 408 (2016) 8221–8229. doi:10.1007/s00216-016-9932-y.
[50] S. Hickert, J. Gerding, E. Ncube, F. Hübner, B. Flett, B. Cramer, et al., A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples, Mycotoxin Res. 31 (2015). doi:10.1007/s12550-015-0221-y.