http://dx.doi.org/10.4322/sc.2017.015

 

Otimização de um método por CLAE-UV para análise de compostos fenolicos em Myrcia oblongata DC., Passiflora caerulea L. e Equisetum giganteum L.

Agostini, Fabiana; Michelon, Francine da Motta; Gomes, Vanessa Amanda Alves; Bertolazzi, Sabrina; Moura, Joséli Schwambach Sidnei

Palavras-chave: cavalinha, decocção, fitoterapia, guamirim, maracujá.

ResumoDentre os principais compostos ativos presentes em plantas usadas na medicina tradicional encontram-se os compostos fenólicos. No entanto, existe uma restrição metodológica para qualificação e quantificação simultânea de vários representantes desta classe. Desta forma, este estudo buscou a otimização e validação de um método por cromatografia liquida de alta eficiência (CLAE) com detector de ultravioleta (UV) para a determinação simultânea de 14 compostos fenólicos. Para confirmar a eficiência do método, foram utilizadas decocções de Passiflora caerulea L. (maracujá), Myrcia oblongata DC. (guamirim) e Equisetum giganteum L. (cavalinha). São escassos os estudos apresentados na literatura com essas espécies. No entanto, estas plantas têm sido amplamente difundidas e usadas na medicina popular pelas suas características antioxidantes. O método apresentou linearidade, repetitividade e precisão. Os coeficientes de correlação ficaram entre 0,9972 e 0,9999; os limites de detecção variaram de 0,01 a 4,48 µg/mL e os de quantificação de 0,04 a 13,58 µg/mL. Nas decocções testadas, foram identificados 09 compostos, sendo os majoritários a vitexina e naringina no guamirim; ácido clorogênico e naringina na cavalinha; e ainda, vitexina e ácido gálico no maracujá. Observou-se que Myrcia oblongata tem um maior potencial antioxidante no que diz respeito à concentração de fenólicos totais e de seus compostos fenólicos avaliados individualmente.


Referências Bibliográficas

[1] Morais SM de, Cavalcanti ESB, Costa SMO, Aguiar LA. Ação antioxidante de chás e condimentos de grande consumo no Brasil. Revista Brasileira de Farmacognosia 19 (2009) 315-320.
[2] Atoui AK, Mansouri A, Boskou G, Kefalas P. Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chemistry 89 (2005) 27-36.
[3] Yaoa L, Jianga Y, Dattab N, Singanusongc R, Liud X, Duana J, Raymonte K, Lislee A, Xuf Y. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chemistry 84 (2004) 253-263.
[4] Zielinski AAF, Haminiuk CWI, Alberti A, Nogueira A, Demiate IM, Granato D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Research International 60 (2014) 246-254.
[5] Patel SS, Soni H, Mishra K, Singhai AK. Recent updates on the genus Passiflora: A review. International Journal of Research in Phytochemistry & Pharmacology 1 (2011) 1-16.
[6] Ozarowskia M, Thiema B. Progress in micropropagation of Passiflora spp. to produce medicinal plants: a mini-review. Revista Brasileira de Farmacognosia 23 (2013) 937-947.
[7] Michielin EMZ. Avaliação do processo de extração com fluido supercrítico do óleo resina de cavalinha (Equisetum arvense). Dissertação de Mestrado, Universidade Federal de Santa Catarina, Brasil, 2002. 105p.
[8] Nascimento MA, Silva AK, França LCB, Quignard ELJ, Lopez JA, Almeida MG. Turnera ulmifolia L. (Turneraceae): Preliminary study of its antioxidant activity. Bioresource Technology 97 (2006) 1387-1391.
[9] Martins DMFH, Santos JGJr, Russe M, Lanziotti VMND, Leal LKAM, Cunha GMA. Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacological Research 49 (2004) 239-243.
[10] Francescato LN, Debenedetti SL, Schwanz TG, Bassani VL, Henriques AT. Identification of phenolic compounds in Equisetum giganteum by LC-ESI-MS/MS and a new approach to total flavonoid quantification. Talanta 105 (2013) 192-203.
[11] Simões CMO, Schenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR. Farmacognosia: da planta ao medicamento. 5a. ed., Editora da UFRGS / Editora da UFSC: Porto Alegre/Florianópolis, 2004. 833p.
[12] Borges LL, Alves SF, Sampaio BL, Conceição EC, Bara MTF, Paula JR. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Revista Brasileira de Farmacognosia 23 (2013) 230-238.
[13] Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC. Validação em métodos cromatográficos e eletroforéticos. Quimica Nova 27 2004 771-780.
[14] Ribeiro FAL de, Ferreira MMC, Morano SC, Silva LR da, Schneider R P. Planilha de validação: uma nova ferramenta para estimar figuras de mérito na validação de métodos analíticos univariados. Quimica Nova 31 (2008) 164-171.
[15] Saito ST. Estudo químico e avaliação da atividade antioxidante de chá-verde brasileiro (Camellia sinensis var. Assamica) Cultivar IAC-259. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Brasil, 2007. 108p.
[16] Morelli LLL. Avaliação de compostos fenólicos majoritários em geleia de uva produzida com a variedade IAC-138-22 (máximo). Dissertação de Mestrado, Universidade Estadual de Campinas, Brasil, 2010. 133p.
[17] Roesler R, Malta LG, Carrasco LC, Holanda RB, Sousa CAS, Pastore GM. Atividade antioxidante de frutas do cerrado. Ciência e Tecnologia de Alimentos 27 (2007) 53-60.
[18] Baydar NG, Özkan G, Sagdiç O. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control 15 (2004) 335-339.
[19] Waterhouse AL, Ignelzi S, Shirley JR. A comparison of methods for quantifying oligomeric proanthocyanidins from grape seed extracts. American Journal of Enology and Viticulture 51 (2000) 383-389.
[20] Pereira CAM, Yariwake JH, Lanças FM, Wauters J-N, Tits M, Angenot L. A HPTLC densitometric determination of flavonoids from Passiflora alata, P. edulis, P. incarnata and P. caerulea and comparison with HPLC method. Phytochemistry Analysis 15 (2004) 241-248.
[21] Colomeu TC, Figueiredo D, Cazarin CBB, Schumacher NSG, Maróstica Jr MR, Meletti LMM, Zollner RL. Antioxidant and anti-diabetic potential of Passiflora alata Curtis aqueous leaves extract in type 1 diabetes mellitus (NOD-mice). International Immunopharmacology 18 (2014) 106-115.
[22] Silva JK da, Cazarin CBB, Colomeu TC, Batista AG, Meletti LMM, Paschoal JAR, Júnior SB, Furlan MF, Reyes FGR, Augusto F, Maróstica Jr MR, Zollner RL de. Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: In vitro and in vivo study. Food Research International 53 (2013) 882-890.
[23] Milovanović V, Radulović N, Todorović Z, Stanković M, Stojanović G. Antioxidant, antimicrobial and genotoxicity screening of hydro-alcoholic extracts of five Serbian Equisetum species. Plant Foods for Human Nutrition 62 (2007) 113-119.
[24] Mimica-Dukic N, Simin N, Cvejic J, Jovin E, Orcic D, Bozin B. Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules 13 (2008) 1455-1464.
[25] Oniszczuka A, Podgórskia R, Oniszczukb T, Zukiewicz-Sobczakc W, Nowakd R, WaksmundzkaHajnosa M. Extraction methods for the determination of phenolic compounds from Equisetum arvense L. herb. Industrial Crops and Products 61 (2014) 377-381.
[26] Wubshet SG, Moresco HH, Tahtah Y, Brighente IMC, Staerk D. High-resolution bioactivity profiling combined with HPLC–HRMS–SPE–NMR: a-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae). Phytochemistry 116 (2015) 246-252.
[27] Thangavel P, Muthu R, Vaiyapuri M. Antioxidant potential of naringin – a dietary flavonoid – in N-Nitrosodiethylamine induced rat liver carcinogenesis. Biomedicine & Preventive Nutrition 2 (2012) 193-202.
[28] Dornas WC, Oliveira TT, Rodrigues-das-Dores RG, Santos AF, Nagem TJ. Flavonoides: potencial terapêutico no estresse oxidativo. Revista de Ciências Farmacêuticas Básica e Aplicada 28 (2007) 241-249.
[29] Muller SD, Vasconcelos SB, Coelho M, Biavatti MW. LC and UV determination of flavonoids from Passiflora alata medicinal extracts and leaves. Journal of Pharmaceutical and Biomedical Analysis 37 (2005) 399-403.
[30] Garambone E, Rosa G. Possíveis benefícios do ácido clorogênico à saúde. Alimentos e Nutrição Araraquara 18 (2007) 229-235.
[31] Belinati KD. Efeitos do ácido clorogênico sobre funções de neutrófilos: estudos in vivo. Dissertação de Mestrado, Universidade de São Paulo, Brasil, 2010. 62p.
[32] Barbosa VF de. Caracterização do perfil da ação do ácido gálico e seus derivados sobre processos oxidativos in vitro e ex vivo. Dissertação de Mestrado, Universidade Estadual Paulista, Brasil, 2010. 83p.
[33] Borneo R, León AE, Aguirre A, Ribotta P, Cantero JJ. Antioxidant capacity of medicinal plants from the Province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chemistry. 112 (2009) 664-670.
[34] Ricco RA, Agudelo I, Garcés M, Evelson P, Wagner ML, Gurni AA. Polifenoles y actividad antioxidante en Equisetum giganteum L. (Equisetaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 10 (2011) 325-332.
[35] Nagai T, Myoda T, Nagashima T. Antioxidative activities of water extract and ethanol extract from field horsetail (tsukushi) Equisetum arvense L. Food Chemistry 91 (2005) 389-394.
[36] Borges LL, Alves SF, Sampaio BL, Conceição EC, Bara MT, Paula JR. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Revista Brasileira de Farmacognosia 23 (2013) 230-238.
[37] Moraes-de-Souza RA. Potencial antioxidante e composição fenólica de infusões de ervas consumidas no Brasil. Dissertação de Mestrado, Universidade de São Paulo, Brasil, 2007. 59p.
[38] Moraes-de-Souza RA, Oldoni TLC, Cabral ISR, Alencar SM de. Compostos fenólicos totais e atividade antioxidante de chás comercializados no brasil. Boletim do Centro de Pesquisa de Processamento de Alimentos, 29 (2011) 229-236.