http://dx.doi.org/10.5935/sc.2018.002

 

Combinación de técnicas de extracción y de análisis cromatográfico para la determinación de metabolitos secundarios en flores tropicales

Sierra LJ et al.

Palavras-chave: Flores, metabolitos secundarios, flavonoides, extracción con CO2 supercrítico, micro-extracción en fase sólida, dispersion de la matriz en fase sólida, Thunbergia grandiflora Roxb., Brownea macrophyla, Petrea volubilis

ResumoSe ha usado la combinación de técnicas de aislamiento y de análisis cromatográfico de metabolitos secundarios con diferentes volatilidades y polaridades, de flores de bignonia azul (Thunbergia grandiflora Roxb., Acantáceae), rosa de monte (Brownea macrophyla, Fabáceae), y corona de reina (Petrea volubilis, Verbenácea). Micro-extracción en fase sólida (HS-SPME, por sus siglas en inglés), extracción con CO2 supercrítico (SFE, por sus siglas en inglés), extracción con solvente (SE, por sus siglas en inglés), y dispersión de la matriz en fase sólida (MSPD, por sus siglas en inglés) condujeron a extractos que se analizaron por cromatografía de gases acoplada a espectrometría de masas, y cromatografía líquida acoplada a espectrometría de masas de alta resolución. Las composiciones de los extractos mostraron que las técnicas de extracción son complementarias. El uso de técnicas que difieren en los principios fisicoquímicos bajo los cuales sucede la extracción es una necesidad que imponen la variedad de volatilidades, masas moleculares y grupos funcionales encontrados en los metabolitos secundarios de flores. Los extractos de las flores de bignonia azul, rosa de monte y corona de reina, mostraron una capacidad antioxidante superior a la del butil hidroxitolueno y el α-tocoferol, sustancias de referencia.


Referências Bibliográficas

[1] Joo SS, Kim YB, Lee DI. Antimicrobial and antioxidant properties of secondary metabolites from white rose flower. Plant
Pathol. J.2010; 26(1): 57-62.
[2] Voon HC, Bhat R, Rusul G. Flower extracts and their essential oils as potential antimicrobial agents for food uses and
pharmaceutical applications. Comp Rev Food Sci Food Safety,2012; 11: 34-55.
[3] Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol,
1999; 86: 985–990.
[4] Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. Diversity and distribution of floral scent. Botanical Review 2006; 72:1-120. http://dx.doi.org/10.1663/0006- 8101(2006)72[1:DADOFS]2.0.CO;2.
[5] Knudsen JT, Tollsten L, Bergstrom G. Floral scents – a checklist of volatile compounds isolated by head-space techniques.
Phytochemistry 1993; 33:253-280. http://dx.doi.org/10.1016/0031-9422(93)85502-I.
[6] Meyer JY, Lavergne C. Beautés fatales: acanthaceae species as invasive alien plants on tropical Indo-Pacific Islands.
Diversity Distrib.2004; 10(5-6): 333-47.
[7] Schönenberger J. Floral structure, development and diversity in Thunbergia(Acanthaceae). Bot. J. Linn. Soc.1999; 130(1):
1-36.
[8] Gómez DA, Macías DJ. Fenología del Palo Cruz (Brownea rosa-de-monteBergius) en un bosque seco de Bolivar, Cauca.
Colombia Forestal, 2012; 15: 105-117.
[9] Núñez V, Otero R, Barona J, Quintana JC, Díaz A, Fonnegra R, Jiménez S, Osorio RG. La inhibición de los efectos tóxicos
de Lachesis muta, Crotalus durissus cumanensisy Micrurus mipartitus(venenos de serpiente) por extractos de plantas.
Pharm. Biol., 2004; 42:49-54.
[10] Núñez V, Otero R, Barona J, Fonnegra R, Jiménez SL, Díaz A, Osorio RG, Quintana JC, Neutralization of the edemaforming, defibrinating and coagulant effects of Bothrops aspervenum by extracts of plants used by healers in Colombia.
Braz. J. Med. Biol. Res., 2004; 37: 969-977.
[11] Drewes S, Martínez S. Morphology of inflorescences in Verbenaceae-Verbenoideae II: Tribe Petreeae. Darwiniana, 1999;
37: 209-218.
[12] El-Hela AA, Al-Amier H, Craker LE. Phytochemical and biological investigation of bluebird vine (Petrea volubilis). Planta
Med., 2009; 75: 56.
[13] Abdel N, Dawoud G, El A, Morsy T. Interrelation of antioxidant, anticancer and antileishmania effects of some selected
Egyptian plants and their phenolic constituents. J. Egypt. Soc. Parasit., 2011; 41: 785-800.
[14] Stashenko EE, Martínez JR, Cárdenas-Vargas S, Saavedra-Barrera R, Durán DC. GC–MS study of compounds isolated
from Coffea arabicaflowers by different extraction techniques. J. Sep. Sci. 2013; 36(17): 2901-2914.
[15] Londoño-Londoño J, de Lima VR, Lara O, Gil A, Pasa TB, Arango GJ, Pineda JR. Clean recovery of antioxidant flavonoids
from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 2010; 119(1): 81-87.
[16] Xiao HB, Krucker M, Albert K, Liang XM. Determination and identification of isoflavonoids in Redix astragaliby
matrix solid-phase dispersion extraction and high-performance liquid chromatography with photodiode array and mass
spectrometric detection. J. Chromatogr. A, 2004; 1032: 117-124.
[17] Ou B, Hampsch M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using
fluorescein as the fluorescent probe. J. Agric. Food Chem., 2001; 49: 4619-4626.
[18] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS
radical cation decolorization assay. Free Radic. Biol. Med., 1999; 26: 1231-1237.
[19] Magalhaes LM, Santos F, M. Segundo A, Reis, S, Lima JL. Rapid microplate high-throughput methodology for assessment
of Folin-Ciocalteu reducing capacity. Talanta, 2010; 83: 441-447.
[20] Stashenko E, Martínez J. Sampling flower scent for chromatographic analysis. J. Sep. Sci., 2008; 31: 2022-2031.
[21] Umano K, Hagi Y, Tamura T, Shoji A, Shibamoto T. Identification of volatile compounds isolated from round kumquat
(Fortunella japonicaSwingle). J. Agric. Food Chem.,1994; 42(9):1888-90.
[22] Shimoda M, Shibamoto T. Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/
MS method. J. Agric. Food Chem.,1990;38(3): 802-4.
[23] Babushok VI, Linstrom PJ, Zenkevich IG. Retention indices for frequently reported compounds of plant essential oils. J.
Phys. Chem. Ref. Data,2011; 40(4): 043101.
[24] Schmidt-Büsser D, Von Arx M, Guerin PM. Host plant volatiles serve to increase the response of male European grape
berry moths, Eupoecilia ambiguella, to their sex pheromone. J. Comp. Physiol. A, 2009; 195(9): 853-64.
[25] von Arx M, Schmidt-Büsser D, Guerin PM. Host plant volatiles induce oriented flight behaviour in male European grapevine
moths, Lobesia botrana. J. Insect Physiol.2011; 57(10): 1323-31.
[26] Bendera M, Ekesi S, Ndung’u M, Srinivasan R, Torto B. A major host plant volatile, 1-octen-3-ol, contributes to mating in
the legume pod borer, Maruca vitrata(Fabricius) (Lepidoptera: Crambidae). Sci. Nat.2015; 102(9-10):1-10.
[27] Tangerman A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol
and dimethyl sulfide in various biological matrices. J. Chromatogr. B, 2009; 877(28): 3366-77.
[28] Bestmann HJ, Winkler L, von Helversen O. Headspace analysis of volatile flower scent constituents of bat-pollinated
plants. Phytochemistry. 1997; 46(7): 1169-72.
[29] Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant
Sci.2006; 25(5): 417-440.
[30] Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 1997; 385:
718-721.
[31] Godard KA, White R, Bohlmann J. Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry,
2008; 69(9): 1838-49.
[32] Paré PW, Tumlinson JH. Plant volatiles as a defense against insect herbivores. Plant Physiol.1999; 121(2): 325-32.
[33] Palacios F, Gladstone S. Eficacia del farnesol y de un extracto de semilla de ayote como repelentes de Atta mexicana.
Manejo Integrado de Plagas y Agroecología, 2003; 68: 89-91.
[34] Herrero M, Cifuentes A, Ibañez E. Sub- and supercritical fluid extraction of functional ingredients from different natural
sources: Plants, food-by-products, algaes and mircoalgae. A review. Food Chem., 2006; 98: 136-148.
[35] Wang FQ, Yao K, Wei DZ. From soybean phytosterols to steroid hormones. Agric. Biol. Sci., 2011; 1: 231-252.
[36] Kritchevsky D, Chen S. Phytosterols-health benefits and potential concerns: a review. Nutrit. Res., 2005; 25(5): 413-428.
[37] Githinji CG, Mbugua P, Kanuri T, Kariuki D. Analgesic and anit-inflammatory activities of 9-hexacosane and stigmasterol
isolated from Mondia whytei. Phytopharmacology, 2012; 2(1): 212-223.
[38] Agnihotri S, Wakode S, Agnihotri A. An overview on anti-inflammatory and chemo-profiles of plants used in traditional
medicine. Indian J. Natural Prod. Resour., 2010; 1(2):150-167.
[39] Lee K, Shin B, Kwang S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch. Pharm. Res., 2004; 27: 1120-1122.
[40] Yoshida Y, Niki E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol., 2003; 49(4): 277-280.
[41] Michielin EM, Bresciani LF, Danielski L, Yunes RA, Ferreira SR. Composition profile of horsetail (Equisetum giganteum
L.) oleoresin: comparing SFE and organic solvents extraction. J. Supercrit. Fluids. 2005;33(2): 131-8.
[42] Giusti M, Wrolstad R. Characterization and measurement of anthocyanins by UV-Visible spectroscopy. Curr. Protoc. Food
Anal. Chem., 2001; 5: 1-13.
[43] Galanakis CM, Goulas V, Tsakona S, Manganaris GA, Gekas V. A knowledge base for the recovery of natural phenols with
differents solvents. International J. Food Prop., 2013; 16: 382-396.
[44] Miean K, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical
plants. J. Agric. Food Chem., 2001; 49: 3106-3112.
[45] Viola H, Wasowski C, Levi M, Wolfman C, Silveira R, Dajas F, Medina J, Paladini A. Apigenin, a component of Matricaria
recutitaflowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med., 1995; 61: 213-216.
[46] Yin F, Giuliano A, Law R, Van A. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators
and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res., 2001; 21: 413-420.