http://dx.doi.org/10.5935/sc.2018.005

 

Influence of high inlet pressure gas chromatography (HIPGC) on analytes retention time

Silva MR et al.

Palavras-chave: high pressure inlet gas chromatography; packed capillary column; gas chromatography.

ResumoHigh inlet pressure gas chromatography (HIPGC) is an analytical tool that offers several   advantages including high efficiency, fast analysis time, and easier elution of high molecular mass  compounds. In this paper a basic study regarding the chromatographic performance of packed capillary  columns (length to 25 cm) utilizing a modified commercial GC instrument was carried out. This lab-made GC system consisted in a new device connected to the GC injector aiming the application of gas  chromatography in two different modes: low inlet pressure and high inlet pressure (c.a. 2000 psi). The  inlet pressure was varied between 500 – 2000 psi and the influence of this pressure transition in the  chromatographic efficiency was evaluated being compared with other GC approaches. The obtained  results applying this modified GC instrument shows that increasing the inlet pressure is possible to reduce the analysis time as well as improve the analytes signal. In addition, this work shows the use of packed capillary columns packed with standard HPLC stationary phases as an alternative approach to GC analysis without requiring temperature programming.


Referências Bibliográficas

[1] Tsizin, S., Bokka, R., Keshet, U., Alon, T., Fialkov, A. B., Tal, N., Amirav, A., Comparison of electrospray LC–MS, LC–MS with
Cold EI and GC–MS with Cold EI for sample identification. Int. J. Mass Spectrom.2017, 422, 119–125.
[2] Tian, B.-W., Feng, F., Zhao, B., Luo, F., Yang, X.-L., Zhou, H.-M., Li, X.-X., Study of Monolithic Integrated Micro Gas
Chromatography Chip. Chinese J. Anal. Chem.2018, 46, 1363–1371.
[3] Burel, A., Vaccaro, M., Cartigny, Y., Tisse, S., Coquerel, G., Cardinael, P., Retention modeling and retention time prediction in
gas chromatography and flow-modulation comprehensive two-dimensional gas chromatography: The contribution of pressure on
solute partition. J. Chromatogr. A2017, 1485, 101–119.
[4] Hu, J., Qu, H., Chang, Y., Pang, W., Zhang, Q., Liu, J., Duan, X., Miniaturized polymer coated film bulk acoustic wave resonator
sensor array for quantitative gas chromatographic analysis. Sensors Actuators B Chem.2018, 274, 419–426.
[5] Taguchi, K., Fukusaki, E., Bamba, T., Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography
technique unifying supercritical fluid chromatography and liquid chromatography. J. Chromatogr. A2014, 1362, 270–7.
[6] Dömötörová, M., Matisová, E., Fast gas chromatography for pesticide residues analysis. J. Chromatogr. A2008, 1207, 1–16.
[7] Kaal, E., Janssen, H. G., Extending the molecular application range of gas chromatography. J. Chromatogr. A2008, 1184, 43–60.
[8] Myers, M. N., Giddings, J. C., High Column Efficiency in Gas Liquid Chromatography at inlet Pressures to 2500 p.s.i. Anal.
Chem.1965, 37, 1453–1457.
[9] Shariff, S.M., Robson, M.M., Bartle, K.D., Myers, P., Clifford, A. A., Use of Liquid Chromatography Packings in High Pressure
Gas Chromatography. J. High Resolut. Chromatogr.1996, 19, 527–529.
[10] Maniquet, A., Bruyer, N., Raffin, G., Baco-Antoniali, F., Demesmay, C., Dugas, V., Randon, J., Behavior of short silica
monolithic columns in high pressure gas chromatography. J. Chromatogr. A2016, 1460, 153–159.
[11] Maniquet, A., Bruyer, N., Raffin, G., Baco-Antionali, F., Demesmay, C., Dugas, V., Randon, J., Behavior of macroporous vinyl
silica and silica monolithic columns in high pressure gas chromatography. J. Chromatogr. A2017, 1504, 105–111.
[12] Sie, S. T.; Beersum, W.; Rijnders, G. W. A., Ppo 51714622. J. Sep. Sci.1966, 1, 459–490.
[13] Giddings, J. C., Myers, M. N., McLaren, L., Keller, R. a, High pressure gas chromatography of nonvolatile species. Compressed
gas is used to cause migration of intractable solutes. Science1968, 162, 67–73.
[14] Myers, M. N., Glddlngs, J. C., High Inlet Pressure Micro Column System for Use in Gas Chromatography. Anal. Chem.1966,
38, 294–297.
[15] Coutinho, C.F.B. , Coutinho, L.F.M., Lanças, F.M., Câmara, C.A.P., Nixdorf, S.L., Mazo, L. H., Development of instrumentation
for amperometric and coulometric detection using ultramicroelectrodes. J. Braz. Chem. Soc.2008, 19, 131–139.
[16] Marins Coutinho, L. F., Domingues Nazario, C. E., Monteiro, A. M., Lanças, F. M., Novel devices for solvent delivery and
temperature programming designed for capillary liquid chromatography. J. Sep. Sci.2014, 37, 1903–1910.
[17] Pinto, J.S.S., Cappelaro, E.A., Lanças, F. M., Design and Construction of an on-line SPE-SFE-CGC System. J. Braz. Chem. Soc.
2001, 12, 192–195.
[18] Pinto, J.S.S. , Lanças, F. M., Design, construction and evaluation of a simple pressurized solvent extraction system. J. Brazilian
Chem. Soc.2009, 20, 913–917.
[19] De Martinis, B. S., Lanças, F. M., An alternative supercritical fluid extraction system for aqueous matrices and its application in
pesticides residue analysis. J. Environ. Sci. Health. B.2000, 35, 539–547.
[20] Sargenti, S. R., Lancas, F. M., Design and construction of a simple supercritical fluid extraction system with semi-preparative and
preparative capabilities for application to natural products. J. Chromatogr. A1994, 667, 213–218.
[21] Coutinho, F. B., Coutinho, L. F. M., Mazo, L. H., Lanåas, F. M., Copper Microelectrode as Liquid Chromatography Detector for
Herbicide Glyphosate. Electroanalysis2007, 19, 1223–1226.
[22] Baker, L. R., Stark, M. a., Orton, A. W., Horn, B. a., Goates, S. R., Density gradients in packed columns. I. Effects of density
gradients on retention and separation speed. J. Chromatogr. A2009, 1216, 5588–5593.