https://dx.doi.org/10.5935/sc.2019.004

Capillary electrochromatography (CEC): recent materials for capillary column preparation, applications, and future perspectives

Fumes B. H., Borsatto J. V. B., Lanças F. M.

Palavras-chave: grafeno, óxido de grafeno, líquidos iônicos, MIP, tecnologias de prepare de colunas, eletrocromatografia capilar

Resumo: A eletrocromatografia capilar (CEC) é uma variação da técnica denominada eletroforese a qual emprega uma coluna capilar contendo, em seu interior, uma fase estacionária similar àquelas empregadas em cromatografia líquida. O desenvolvimento de novas colunas para esta técnica tem recebido expressiva atenção, predominando fases baseadas em grafeno e seus derivados, líquidos iônicos (ILs) e polímeros impressos molecularmente (MIPs). A presente revisão discute os avanços recentes no preparo de novos materiais para CEC, sua principais aplicações e tendências futuras da técnica.


Referências Bibliográficas

  1. Pretorius, B.J. Hopkins, J.D. Schieke, Electro-osmosis. A new concept for high-speed liquid chromatography, J. Chromatogr. A. 99 (1974) 23–30. doi:10.1016/S0021-9673(00)90842-2.
  2. W. Jorgenson, K.D.A. Lukacs, High-resolution separations based on electrophoresis and electroosmosis, J. Chromatogr. A. 218 (1981) 209–216. doi:10.1016/S0021-9673(00)82057-9.
  3. H. Knox, I.H. Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia. 24 (1987) 135–143. doi:10.1007/BF02688476.
  4. A. Carney, M.M. Robson, K.D. Bartle, P. Myers, Investigation into the formation of bubbles in capillary electrochromatography, HRC J. High Resolut. Chromatogr. 22 (1999) 29–32. doi:10.1002/(SICI)1521-4168(19990101)22:1<29::AID-JHRC29>3.0.CO;2-U.
  5. R. Chen, M.T. Dulay, R.N. Zare, F. Svec, E. Peters, Macroporous photopolymer frits for capillary electrochromatography, Anal. Chem. 72 (2000) 1224–1227. doi:10.1021/ac9911793.
  6. Okamoto, Y. Ikawa, F. Kitagawa, K. Otsuka, Preparation of fritless capillary using avidin immobilized magnetic particles for electrochromatographic chiral separation, J. Chromatogr. A. 1143 (2007) 264–269. doi:10.1016/j.chroma.2007.01.006.
  7. Saito, K. Jinno, T. Greibrokk, Capillary columns in liquid chromatography: between conventional columns and microchips, J. Sep. Sci. 27 (2004) 1379–1390. doi:10.1002/jssc.200401902.
  8. C. Lam, E. Sanz Rodriguez, P.R. Haddad, B. Paull, Recent advances in open tubular capillary liquid chromatography, Analyst. (2019). doi:10.1039/c9an00329k.
  9. Aydoğan, Organic polymer-based monolithic capillary columns and their applications in food analysis ?, (2019) 1–18. doi:10.1002/jssc.201801051.
  10. Rozenbrand, W.P. Van Bennekom, Silica-based and organic monolithic capillary columns for LC: Recent trends in proteomics, J. Sep. Sci. 34 (2011) 1934–1944. doi:10.1002/jssc.201100294.
  11. Liu, J. Shi, G. Jiang, Application of graphene in analytical sample preparation, TrAC Trends Anal. Chem. 37 (2012) 1–11. doi:10.1016/j.trac.2012.03.011.
  12. Liu, J. Shi, L. Zeng, T. Wang, Y. Cai, G. Jiang, Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes, J. Chromatogr. A. 1218 (2011) 197–204. doi:10.1016/j.chroma.2010.11.022.
  13. Y.N. Gengler, K. Spyrou, P. Rudolf, A roadmap to high quality chemically prepared Graphene, J. Phys. D. Appl. Phys. 43 (2010). doi:10.1088/0022-3727/43/37/374015.
  14. S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339–1339. doi:10.1021/ja01539a017.
  15. D. Ho, A.J. Canestraro, J.L. Anderson, Ionic liquids in solid-phase microextraction: A review, Anal. Chim. Acta. 695 (2011) 18–43. doi:10.1016/j.aca.2011.03.034.
  16. Fontanals, F. Borrull, R.M. Marcé, Ionic liquids in solid-phase extraction, TrAC - Trends Anal. Chem. 41 (2012) 15–26. doi:10.1016/j.trac.2012.08.010.
  17. Núñez, H. Gallart-Ayala, C.P.B. Martins, P. Lucci, New trends in fast liquid chromatography for food and environmental analysis, J. Chromatogr. A. 1228 (2012) 298–323. doi:10.1016/j.chroma.2011.10.091.
  18. Tang, X. Gu, Q. Luo, S. Chen, L. Wu, J. Xiong, Preparation of molecularly imprinted polymer for use as SPE adsorbent for the simultaneous determination of five sulphonylurea herbicides by HPLC, Food Chem. 150 (2014) 106–112. doi:10.1016/j.foodchem.2013.10.152.
  19. Martín-Esteban, Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation, TrAC - Trends Anal. Chem. 45 (2013) 169–181. doi:10.1016/j.trac.2012.09.023.
  20. Zheng, Y.P. Huang, Z.S. Liu, Recent developments and applications of molecularly imprinted monolithic column for HPLC and CEC, J. Sep. Sci. 34 (2011) 1988–2002. doi:10.1002/jssc.201100164.
  21. H. Wei, L.N. Mu, Q.Q. Pang, Y.P. Huang, Z.S. Liu, Preparation and characterization of grafted imprinted monolith for capillary electrochromatography, Electrophoresis. 33 (2012) 3021–3027. doi:10.1002/elps.201200042.
  22. Zhang, L. Huang, Q. Chen, Z. Chen, A silica monolithic column with chemically bonded L-pipecolic acid as chiral stationary phase for enantiomeric separation of dansyl amino acids by CEC-MS, Chromatographia. 75 (2012) 289–296. doi:10.1007/s10337-012-2188-6.
  23. P. Liang, X.Y. Meng, C.M. Liu, J.W. Wang, J.D. Qiu, Enantiomeric separation by open-tubular capillary electrochromatography using bovine-serum-albumin-conjugated graphene oxide-magnetic nanocomposites as stationary phase, Microfluid. Nanofluidics. 16 (2014) 195–206. doi:10.1007/s10404-013-1235-4.
  24. Hong, Y. Zheng, W. Hu, Y. Ji, Preparation and evaluation of b ovine serum albumin immobilized chiral monolithic column for affinity capillary electrochromatography, Anal. Biochem. 464 (2014) 43–50. doi:10.1016/j.ab.2014.07.015.
  25. Jiang, Y. Jiang, G. Shi, T. Zhou, Graphene oxide coated capillary for the analysis of endocrine-disrupting chemicals by open-tubular capillary electrochromatography with amperometric detection, J. Sep. Sci. 37 (2014) 1671–1678. doi:10.1002/jssc.201301126.
  26. Ye, J. Li, Determination of dopamine, epinephrine, and norepinephrine by open-tubular capillary electrochromatography using graphene oxide molecularly imprinted polymers as the stationary phase, J. Sep. Sci. 37 (2014) 2239–2247. doi:10.1002/jssc.201400287.
  27. Svobodová, O. Kofroňová, O. Benada, V. Král, I. Mikšík, Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol–gel modified inner capillary wall, J. Chromatogr. A. 1517 (2017) 185–194. doi:10.1016/j.chroma.2017.08.014.
  28. Zhang, Y. Zhang, W. Chen, Y. Zhang, L. Zhu, P. He, Q. Wang, Enantiomeric separation of tryptophan by open-tubular microchip capillary electrophoresis using polydopamine/gold nanoparticles conjugated DNA as stationary phase, Anal. Methods. 9 (2017) 3561–3568. doi:10.1039/C7AY01035D.
  29. Ma, Y. Xi, Y. Du, J. Yang, X. Ma, C. Chen, Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography, Microchim. Acta. 187 (2020). doi:10.1007/s00604-019-4037-x.
  30. Lei, L.Y. Zhang, L. Wan, B.F. Shi, Y.Q. Wang, W.B. Zhang, Hybrid monolithic columns with nanoparticles incorporated for capillary electrochromatography, J. Chromatogr. A. 1239 (2012) 64–71. doi:10.1016/j.chroma.2012.03.065.
  31. Ye, J. Li, Y. Xie, C. Liu, Graphene oxide coated capillary for chiral separation by CE, Electrophoresis. 34 (2013) 841–845. doi:10.1002/elps.201200516.
  32. Sitko, B. Zawisza, E. Malicka, Graphene as a new sorbent in analytical chemistry, TrAC Trends Anal. Chem. 51 (2013) 33–43. doi:10.1016/j.trac.2013.05.011.
  33. Desiderio, D.V. Rossetti, F. Iavarone, I. Messana, M. Castagnola, Capillary electrophoresis-mass spectrometry: Recent trends in clinical proteomics, J. Pharm. Biomed. Anal. 53 (2010) 1161–1169. doi:10.1016/j.jpba.2010.06.035.
  34. Han, Q. Wang, X. Liu, S. Jiang, Polymeric ionic liquid modified organic-silica hybrid monolithic column for capillary electrochromatography, J. Chromatogr. A. 1246 (2012) 9–14. doi:10.1016/j.chroma.2011.12.029.
  35. D’Orazio, S. Fanali, C 18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: Usefulness in nano-liquid chromatography and capillary electrochromatography, J. Chromatogr. A. 1232 (2012) 176–182. doi:10.1016/j.chroma.2011.11.056.
  36. Wang, Q.L. Deng, G.Z. Fang, M.F. Pan, Y. Yu, S. Wang, A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography, Anal. Chim. Acta. 712 (2012) 1–8. doi:10.1016/j.aca.2011.10.023.
  37. M. Wang, X.P. Yan, Fabrication of graphene oxide nanosheets incorporated monolithic column via one-step room temperature polymerization for capillary electrochromatography, Anal. Chem. 84 (2012) 39–44. doi:10.1021/ac202860a.
  38. Tang, L. Wang, H. Han, H. Qiu, X. Liu, S. Jiang, Preparation and characterization of dipyridine modified hybrid-silica monolithic column for mixed-mode capillary electrochromatography, RSC Adv. 3 (2013) 7894. doi:10.1039/c3ra40580j.
  39. CHI, W. WANG, Y. JI, Preparation and evaluation of pepsin affinity organic polymer capillary monolithic column, Chinese J. Chromatogr. 32 (2014) 791. doi:10.3724/SP.J.1123.2014.04042.
  40. Zhang, W. Zhang, T. Bao, Z. Chen, Enhancement of capillary electrochromatographic separation performance by conductive polymer in a layer-by-layer fabricated graphene stationary phase, J. Chromatogr. A. 1339 (2014) 192–199. doi:10.1016/j.chroma.2014.02.083.
  41. Zhang, X. Lei, L. Deng, M. Li, S. Yao, X. Wu, Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds, Microchim. Acta. 185 (2018) 318. doi:10.1007/s00604-018-2847-x.
  42. Xi, Y. Du, X. Sun, S. Zhao, Z. Feng, C. Chen, W. Ding, A monolithic capillary modified with a copoplymer prepared from the ionic liquid 1-vinyl-3-octylimidazolium bromide and styrene for electrochromatography of alkylbenzenes, polycyclic aromatic hydrocarbons, proteins and amino acids, Microchim. Acta. 187 (2020) 67. doi:10.1007/s00604-019-3894-7.
  43. Wang, N. Zheng, Y. Huang, J. Wang, X. Lin, Z. Xie, Dipyridyl-immobilized ionic liquid type hybrid silica monolith for hydrophilic interaction electrochromatography, Electrophoresis. 34 (2013) 3091–3099. doi:10.1002/elps.201300244.
  44. Gao, R. Mo, Y. Ji, Preparation and characterization of tentacle-type polymer stationary phase modified with graphene oxide for open-tubular capillary electrochromatography, J. Chromatogr. A. 1400 (2015) 19–26. doi:10.1016/j.chroma.2015.04.039.
  45. D. Dolzan, D.A. Spudeit, Z.S. Breitbach, W.E. Barber, G.A. Micke, D.W. Armstrong, Comparison of superficially porous and fully porous silica supports used for a cyclofructan 6 hydrophilic interaction liquid chromatographic stationary phase, J. Chromatogr. A. 1365 (2014) 124–130. doi:10.1016/j.chroma.2014.09.010.
  46. Aydoğan, K. Çetin, A. Denizli, Novel tentacle-type polymer stationary phase grafted with anion exchange polymer chains for open tubular CEC of nucleosides and proteins, Analyst. 139 (2014) 3790–3795. doi:10.1039/c3an01897k.
  47. Mikšík, K. Lacinová, Z. Zmatlíková, P. Sedláková, V. Král, D. Sýkora, P. Řezanka, V. Kašička, Open-tubular capillary electrochromatography with bare gold nanoparticles-based stationary phase applied to separation of trypsin digested native and glycated proteins, J. Sep. Sci. 35 (2012) 994–1002. doi:10.1002/jssc.201101049.
  48. C. Liu, Q.L. Deng, G.Z. Fang, H.L. Liu, J.H. Wu, M.F. Pan, S. Wang, Ionic liquids monolithic columns for protein separation in capillary electrochromatography, Anal. Chim. Acta. 804 (2013) 313–320. doi:10.1016/j.aca.2013.10.037.
  49. P. Liang, X.N. Wang, C.M. Liu, X.Y. Meng, J.D. Qiu, Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A. 1323 (2014) 135–142. doi:10.1016/j.chroma.2013.11.048.
  50. Singh, S. Ravichandran, D.D. Norton, S.D. Fugmann, R. Moaddel, Synthesis and characterization of a SIRT6 open tubular column: Predicting deacetylation activity using frontal chromatography, Anal. Biochem. 436 (2013) 78–83. doi:10.1016/j.ab.2013.01.018.
  51. Al-Hussin, R.I. Boysen, K. Saito, M.T.W. Hearn, Preparation and electrochromatographic characterization of new chiral β-cyclodextrin poly(acrylamidopropyl) porous layer open tubular capillary columns, J. Chromatogr. A. 1358 (2014) 199–207. doi:10.1016/j.chroma.2014.06.067.
  52. Ali, W.J. Cheong, Open tubular capillary electrochromatography with an N-phenylacrylamide-styrene copolymer-based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose, J. Sep. Sci. 38 (2015) 1763–1770. doi:10.1002/jssc.201401356.
  53. Wang, Y. Yao, Y. Li, S. Ma, X. Peng, J. Ou, M. Ye, Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC-MS/MS analysis of tryptic digest, Anal. Chim. Acta. 979 (2017) 58–65. doi:10.1016/j.aca.2017.05.004.
  54. OuYang, Y.-Y. Luo, Z.-S. Wen, W.-J. Wu, G.-Z. Cao, X.-Y. Zhu, L. Yang, Y.-G. Wang, J.-Y. Dong, Simultaneous Determination of Flumequine and Oxolinic Acid Residues in Aquatic Products Using Pressurized Capillary Electrochromatography, Food Anal. Methods. 7 (2014) 1770–1775. doi:10.1007/s12161-014-9818-6.
  55. Zhao, Q. Wang, J. Li, X. Qiao, Z. Xu, Study on an electrochromatography method based on organic-inorganic hybrid molecularly imprinted monolith for determination of trace trichlorfon in vegetables, J. Sci. Food Agric. 94 (2014) 1974–1980. doi:10.1002/jsfa.6511.
  56. L. Lin, J.W. Hsu, M.R. Fuh, Simultaneous determination of nitrate and nitrite in vegetables by poly(vinylimidazole-co-ethylene dimethacrylate) monolithic capillary liquid chromatography with UV detection, Talanta. 205 (2019). doi:10.1016/j.talanta.2019.06.082.
  57. D’Orazio, S. Fanali, Pressurized nano-liquid–junction interface for coupling capillary electrochromatography and nano-liquid chromatography with mass spectrometry, J. Chromatogr. A. 1317 (2013) 67–76. doi:10.1016/j.chroma.2013.08.052.