http://dx.doi.org/10.5935/sc.2019.007

Enantioseparação de aminoácidos não derivatizados por cromatografia líquida capilar. 1. Antecedentes das separações quirais

Santos N. G. P., Maciel E. V. S., Lanças F. M.

Palavras chaves: Enantioseparação, compostos quirais, cromatografia líquida capilar, aminoácidos

Resumo: A necessidade em separar compostos quirais, ou seja, aqueles que possuem um carbono assimétrico ligado a quatro átomos ou grupos químicos diferentes, para posteriormente serem utilizados nas áreas farmacêutica, biológica, bioquímica, dentre outras, levou ao desenvolvimento de técnicas cromatográficas quirais, que empregam comumente uma fase estacionária sólida quiral com uma fase móvel não-quiral. Essa configuração permite separar uma mistura racêmica em seus enantiômeros puros. O objetivo dessa separação é o fato de que, em muitos casos, a atividade biológica de um composto quiral depende de um determinado enantiômero. Um exemplo é o uso da talidomida, onde um enantiômero possui efeito sedativo, enquanto o outro foi responsável por um dos maiores erros da medicina no mundo, ao levar cerca de 10.000 crianças a terem desabilidades congênitas. Nesse contexto, o objeto desse trabalho consiste em apresentar as principais fases estacionárias sólidas quirais empregadas nesse tipo de cromatografia, como as do tipo “brush”, que são baseadas na ligação de grupos quirais a superfície da sílica; as fases poliméricas a base de celulose e amilose; as fases de polímeros helicoidais, as fases baseadas no tamanho e seletividade de cavidades como em ciclodextrinas, éteres de coroa e antibióticos macrocíclicos, e as fases baseadas em troca de ligantes.


Referências Bibliográficas

  1. Scriba GKE. Chiral recognition mechanisms in analytical separation sciences. Chromatographia. 2012; 75: 815-38.
  2. Kelvin WTL. The molecular tactics of a crystal. United Kingdom: Clarendon Pres; 1984.
  3. Pasteur L. Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire. Comptes Rendus de l’Académie des Sciences. 1848; 26: 535-38.
  4. Pasteur L. Recherches sur les relations qui peuvent exister entre la forme cristalline la composition chimique et le sens de la polarization rotatoire. 3. ed. Paris: Annales de Chimie et de Physique; 1848.
  5. Kauffman GB, Myers RD. Pasteur’s resolution of racemic acid: sesquicentennial retrospect and a new transla J Chem Educ. 1998; 3(6): 1-18.
  6. Joseph G. Louis Pasteur, language, and molecular chirality. I. Background and dissymmetry. Chirality. 2010; 23(1): 1-16.
  7. Kauffman GB, Myers RD. The resolution of racemic acid: A classic stereochemical experiment for the undergraduate laboratory. J Chem Educ. 1975; 52(12): 777-81.
  8. Kauffman GB. Left-handed and right-handed molecules. Louis Pauster’s resolution of racemic acid. Chemistry. 1977; 50(3): 14-8.
  9. Kauffman GB, Chooljian SH. Wohler synthesis of artificial urea: A modern version of a classic experiment. J Chem Educ. 1979; 56(3), 197-200.
  10. Wagnière GH. On chirality and the universal asymmetry: reflections on image and mirror image. Weinheim: Wiley-VCH; 2007.
  11. McNaught AD. Compendium of chemical terminology. Oxford: Blackwell Science; 1997.
  12. Li B, Haynie DT. Chiral drug separation. Encycl Chem Process. 2006; 1: 449-58.
  13. Rukhlenko ID, Tepliakov NV, Baimuratov AS, Andronaki SA, Gun’ko YK, Baranov AV, Fedorov AV. Completely chiral optical force for enantioseparation. Scientific Reports. 2016; 6(1), 1-8.
  14. Vander Heyden Y, Mangelings D, Matthijs N, Perrin C. Chiral separations. In: Ahuja S, editor. Handbook of pharmaceutical analysis by HPLC. Volume 6. Amsterdam: Elsevier; 2005.
  15. DE Camp WH. The importance of enantiomer separations. In: Lough WJ, editor. Chiral liquid chromatography. Glasgow: Blackie; 1989.
  16. Somers GF. Pharmacological properties of thalidomide (α-phthalimido glutarimide), a new sedative hypnotic drug. Brit J Pharmacol. 1960; 15: 111-16.
  17. Miller MT. Thalidomide embryopathy: A model for the study of congenital incomitant horizontal strabismus. Trans Am Ophthalmol Soc. 1991; 89:623-74.
  18. Vargesson N. Thalidomide. In: Grupta RC, editor. Reproductive and development toxicology. 2. ed. Amsterdam: Elsevier. 2017.
  19. Ghoreishi K. Thalidomide. In: Wexler P, editor. Encyclopedia of toxicology. 3. ed. Amsterdam: Elsevier; 2014.
  20. Knoche B, Blaschke G. Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. J Chromatogr A. 1994; 22(1): 235-40.
  21. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry: life at the molecular level. 2.ed. Weinheim: Wiley; 2006.
  22. Sánchez C. The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram. Basic Clin Pharmacol Toxicol. 2006; 99:91-5.
  23. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobio. 2019; 39: 31-59.
  24. Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14(35): 2-21.
  25. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD. Base neurochemistry: molecular, cellular and medical Aspects. 6.ed. Philadelphia: Lippincott-Raven; 1999.
  26. Ahnoff M, Einarsson S. Chiral derivatization. In: Lough WJ, editor. Chiral liquid chromatography. Glasgow: Blackie; 1989.
  27. Fernandes C, Phyo YZ, Silva AS, Kijjoa A, Pinto MMM. Chiral stationary phases based on small molecules: an update of the last 17 years. Sep Purif Rev. 2017; 47(2): 89-124.
  28. Knezevic A, Novak J, Vinkovic V. New brush-type chiral stationary phases for enantioseparation of pharmaceutical drugs. Molecules. 2019; 24(4): 823-39.
  29. Berthod A, Jin HL, Stalcup AM, Armstrong W. Interactions of chiral molecules with an (R)-N-(3,5-dinitrobenzol) phenylglycine HPLC stationary phase. 1990;2(1):38-42.
  30. Pirkle WH, House DW. Chiral high-performance liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org Chem. 1979; 44(12): 1957-60.
  31. Shi G, Dai Xiao, Zhou Y, Zhang J, Shen J, Wan X. Synthesis and enantioseparation of proline-derived helical polyacetylenes as chiral stationary phases for HPLC. Polym Chem. 2020; 11(18): 3179-87.
  32. Okamoto Y. Precision synthesis, structure and function of helical polymers. Proc Jpn Ser B Phys Biol Sci. 2015; 91(6):246-61.
  33. Menges RA, Armstrong DW. Chiral separations using native and functionalized cyclodextrin-bonded stationary phases in high-pressure liquid chromatography. In: Ahuja S, editor. Chiral separations by liquid chromatography. American Chemical Society.1991.
  34. Xiao Y, Ng SC, Yang Tan TT, Wang Y. Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatog A. 2012; 1269(21):52-68.
  35. Stalcup AM. Cyclodextrin bonded stationary phases in enantiomer separations. In: Subramanian G, editor. A practical approach to chiral separations by liquid chromatography. Volume 5. Weinheim: Wiley-VCH; 1994.
  36. Hyun MH. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases. J Chromatog A. 2016; 1467(7):19-32.
  37. Hirose K, Yongzhu J, Nakamura T, Nishioka R, Ueshige T, Tobe Y. Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase. Chirality. 2005; 17(3):142-48.
  38. Yongzhu J, Hirose K, Nakamura T, Nishioka R, Ueshige T, Tobe Y. Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds. J Chromatog A. 2006; 1129(2): 201-7.
  39. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem. 1994; 66(9):1473-84.
  40. Ilisz I, Pataj Z, Aranyi A, Péter A. Macrocyclic antibiotic selectors in direct HPLC enantioseparation. Sep Purif Rev. 2012; 41(3):207-49.
  41. Ward TJ, Farris III AB. Chiral separations using the macrocyclic antibiotics: a review. J Chromatog A. 2001; 906(1):73-89.
  42. Hagina J. Protein-based chiral stationary phases for high-performance liquid chromatography enantionseparations. J Chromatog A. 2001; 906(1):253-73.
  43. Bi C, Zheng X, Azaria S, Beeram S, Li Z, Hage DS. Chromatographic studies of protein-based chiral separations. Sep. 2016; 3(3): 27-53.
  44. Natalini A, Sardella R. Chromatographic separations and analysis: chiral ion and ligand exchange stationary phases. Comp Chirality. 2012; 8: 115-52.
  45. Lourenço TC, Scatena GS. Cromatografia quiral: do analítico ao preparativo. In: Cass Q, Cassiano N, editor. Cromatografia líquida: novas tendências e aplicações. Rio de Janeiro: Elsevier; 2015.