Enantioseparation of underivatized amino acids by capillary liquid chromatography. 1. Background on chiral separations

Santos N. G. P., Maciel E. V. S., Lanças F. M.

Keywords: Enantioseparation, chiral compounds, capillary liquid chromatography, amino acids

Abstract: The need to separate chiral compounds, that is, those with an asymmetric carbon linked to four different atoms or chemical groups, to later be used in the pharmaceutical, biological, biochemical areas, among others, led to the development of chiral chromatographic techniques. Chiral chromatography usually employs a solid chiral stationary phase with a non-chiral mobile phase. This configuration allows us to separate a racemic mixture in its pure enantiomers. The goal of this separation is that in many cases, a chiral compound’s biological activity depends on a certain enantiomer. A historical case of this fact was thalidomide, where one enantiomer has a sedative effect, while the other isomer was responsible for one of the biggest medical mistakes in the world when it takes about 10,000 children to have congenital disabilities. This review aims to present and discuss the main chiral solid stationary phases employed in this type of chromatography. This includes the “brush type” phases, which are based on the bonding of chiral groups to the silica surface, the polymeric phases based on cellulose and amylose, the helical polymeric phases, the cavity-type phases based on cyclodextrins, crown ethers and macrocyclic antibiotics, and, the ligand exchange phases.

Referências Bibliográficas

  1. Scriba GKE. Chiral recognition mechanisms in analytical separation sciences. Chromatographia. 2012; 75: 815-38.
  2. Kelvin WTL. The molecular tactics of a crystal. United Kingdom: Clarendon Pres; 1984.
  3. Pasteur L. Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire. Comptes Rendus de l’Académie des Sciences. 1848; 26: 535-38.
  4. Pasteur L. Recherches sur les relations qui peuvent exister entre la forme cristalline la composition chimique et le sens de la polarization rotatoire. 3. ed. Paris: Annales de Chimie et de Physique; 1848.
  5. Kauffman GB, Myers RD. Pasteur’s resolution of racemic acid: sesquicentennial retrospect and a new transla J Chem Educ. 1998; 3(6): 1-18.
  6. Joseph G. Louis Pasteur, language, and molecular chirality. I. Background and dissymmetry. Chirality. 2010; 23(1): 1-16.
  7. Kauffman GB, Myers RD. The resolution of racemic acid: A classic stereochemical experiment for the undergraduate laboratory. J Chem Educ. 1975; 52(12): 777-81.
  8. Kauffman GB. Left-handed and right-handed molecules. Louis Pauster’s resolution of racemic acid. Chemistry. 1977; 50(3): 14-8.
  9. Kauffman GB, Chooljian SH. Wohler synthesis of artificial urea: A modern version of a classic experiment. J Chem Educ. 1979; 56(3), 197-200.
  10. Wagnière GH. On chirality and the universal asymmetry: reflections on image and mirror image. Weinheim: Wiley-VCH; 2007.
  11. McNaught AD. Compendium of chemical terminology. Oxford: Blackwell Science; 1997.
  12. Li B, Haynie DT. Chiral drug separation. Encycl Chem Process. 2006; 1: 449-58.
  13. Rukhlenko ID, Tepliakov NV, Baimuratov AS, Andronaki SA, Gun’ko YK, Baranov AV, Fedorov AV. Completely chiral optical force for enantioseparation. Scientific Reports. 2016; 6(1), 1-8.
  14. Vander Heyden Y, Mangelings D, Matthijs N, Perrin C. Chiral separations. In: Ahuja S, editor. Handbook of pharmaceutical analysis by HPLC. Volume 6. Amsterdam: Elsevier; 2005.
  15. DE Camp WH. The importance of enantiomer separations. In: Lough WJ, editor. Chiral liquid chromatography. Glasgow: Blackie; 1989.
  16. Somers GF. Pharmacological properties of thalidomide (α-phthalimido glutarimide), a new sedative hypnotic drug. Brit J Pharmacol. 1960; 15: 111-16.
  17. Miller MT. Thalidomide embryopathy: A model for the study of congenital incomitant horizontal strabismus. Trans Am Ophthalmol Soc. 1991; 89:623-74.
  18. Vargesson N. Thalidomide. In: Grupta RC, editor. Reproductive and development toxicology. 2. ed. Amsterdam: Elsevier. 2017.
  19. Ghoreishi K. Thalidomide. In: Wexler P, editor. Encyclopedia of toxicology. 3. ed. Amsterdam: Elsevier; 2014.
  20. Knoche B, Blaschke G. Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. J Chromatogr A. 1994; 22(1): 235-40.
  21. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry: life at the molecular level. 2.ed. Weinheim: Wiley; 2006.
  22. Sánchez C. The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram. Basic Clin Pharmacol Toxicol. 2006; 99:91-5.
  23. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobio. 2019; 39: 31-59.
  24. Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14(35): 2-21.
  25. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD. Base neurochemistry: molecular, cellular and medical Aspects. 6.ed. Philadelphia: Lippincott-Raven; 1999.
  26. Ahnoff M, Einarsson S. Chiral derivatization. In: Lough WJ, editor. Chiral liquid chromatography. Glasgow: Blackie; 1989.
  27. Fernandes C, Phyo YZ, Silva AS, Kijjoa A, Pinto MMM. Chiral stationary phases based on small molecules: an update of the last 17 years. Sep Purif Rev. 2017; 47(2): 89-124.
  28. Knezevic A, Novak J, Vinkovic V. New brush-type chiral stationary phases for enantioseparation of pharmaceutical drugs. Molecules. 2019; 24(4): 823-39.
  29. Berthod A, Jin HL, Stalcup AM, Armstrong W. Interactions of chiral molecules with an (R)-N-(3,5-dinitrobenzol) phenylglycine HPLC stationary phase. 1990;2(1):38-42.
  30. Pirkle WH, House DW. Chiral high-performance liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org Chem. 1979; 44(12): 1957-60.
  31. Shi G, Dai Xiao, Zhou Y, Zhang J, Shen J, Wan X. Synthesis and enantioseparation of proline-derived helical polyacetylenes as chiral stationary phases for HPLC. Polym Chem. 2020; 11(18): 3179-87.
  32. Okamoto Y. Precision synthesis, structure and function of helical polymers. Proc Jpn Ser B Phys Biol Sci. 2015; 91(6):246-61.
  33. Menges RA, Armstrong DW. Chiral separations using native and functionalized cyclodextrin-bonded stationary phases in high-pressure liquid chromatography. In: Ahuja S, editor. Chiral separations by liquid chromatography. American Chemical Society.1991.
  34. Xiao Y, Ng SC, Yang Tan TT, Wang Y. Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatog A. 2012; 1269(21):52-68.
  35. Stalcup AM. Cyclodextrin bonded stationary phases in enantiomer separations. In: Subramanian G, editor. A practical approach to chiral separations by liquid chromatography. Volume 5. Weinheim: Wiley-VCH; 1994.
  36. Hyun MH. Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases. J Chromatog A. 2016; 1467(7):19-32.
  37. Hirose K, Yongzhu J, Nakamura T, Nishioka R, Ueshige T, Tobe Y. Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase. Chirality. 2005; 17(3):142-48.
  38. Yongzhu J, Hirose K, Nakamura T, Nishioka R, Ueshige T, Tobe Y. Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds. J Chromatog A. 2006; 1129(2): 201-7.
  39. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem. 1994; 66(9):1473-84.
  40. Ilisz I, Pataj Z, Aranyi A, Péter A. Macrocyclic antibiotic selectors in direct HPLC enantioseparation. Sep Purif Rev. 2012; 41(3):207-49.
  41. Ward TJ, Farris III AB. Chiral separations using the macrocyclic antibiotics: a review. J Chromatog A. 2001; 906(1):73-89.
  42. Hagina J. Protein-based chiral stationary phases for high-performance liquid chromatography enantionseparations. J Chromatog A. 2001; 906(1):253-73.
  43. Bi C, Zheng X, Azaria S, Beeram S, Li Z, Hage DS. Chromatographic studies of protein-based chiral separations. Sep. 2016; 3(3): 27-53.
  44. Natalini A, Sardella R. Chromatographic separations and analysis: chiral ion and ligand exchange stationary phases. Comp Chirality. 2012; 8: 115-52.
  45. Lourenço TC, Scatena GS. Cromatografia quiral: do analítico ao preparativo. In: Cass Q, Cassiano N, editor. Cromatografia líquida: novas tendências e aplicações. Rio de Janeiro: Elsevier; 2015.