Novas perspectivas em técnicas de microextração estática

Ide A. H., Nogueira J. M. F.

Keywords: Bar adsorptive microextraction (BAµE), Hollow fibre microextraction (HFµE), Static microextraction techniques, Floating sampling technology, Real samples.

Resumo: The trace determination of priority or emerging organic compounds in matrices with high complexity, requires the use of appropriate analytical techniques for sample preparation prior to instrumental analysis. In the last three decades, the static microextraction techniques have shown great preponderance to monitor organic contaminants in different types of samples, in combination with the great selectivity and sensitivity of the modern analytical instrumentation. Although the literature proposes several microextraction techniques, most of the approaches, apart from being expensive, present several limitations from the practical point of view, are environmentally questionable and require improvement in order to be easily applied in routine.
Recently, state-of-the-art analytical devices were introduced in the bar adsorptive microextraction (BAµE) technique and, proposed an innovative hybrid technique, the hollow fiber microextraction (HFµE). The main advantages of these new approaches are, in addition to the devices being easily prepared at the laboratory, the great simplicity, easy handling, high cost-benefit, ecological sustainability, as well as feasibility for routine work.
The present contribution intends to envisage another perspective on the advantages of static microextraction techniques, with special emphasis on the innovations introduced by BAµE and HFµE methodologies, as alternative analytical tools for monitoring traces of organic contaminants with impact.

Referências Bibliográficas

  1. Chen Y, Guo Z, Wang X, Qiu C. Sample preparation. Chromatogr. A. 2008; 1184(1-2): 191-219.
  2. Borges KB, de Figueiredo EC, Queiroz MEC. Preparo de amostras para análise de compostos orgânicos. RJ-Brasil. LTC. 2015.
  3. Raynie DE, Modern extraction techniques. Anal. Chem. 2010; 82(12): 4911-4916.
  4. Islas G, Ibarra IS, Hernandez P, Miranda JM, Cepeda A. Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: A review. J. Anal. Chem. 2017; 1-16.
  5. Cabrera LC, Martins ML, Primel EG, Prestes OD, Adaime MB, Zanella R. Extração em fase sólida dispersiva na determinação de resíduos e contaminantes em alimentos. Chromatogr. 2012; 4(3): 227-240.
  6. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Chem. 1990; 62(19): 2145-2148.
  7. Valente ALP, Augusto F. Microextração por fase sólida. Química Nova. 2000; 23(4): 523-530.
  8. Baltussen E, Sandra P. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. Microcolumn. 1999; 11(10): 737-747.
  9. Nogueira JMF. Extração sortiva em barra de agitação (SBSE): Uma metodologia inovadora para microextração estática. Chromatogr. 2012; 4(4): 1-11.
  10. Neng NR, Silva ARM, Nogueira JMF. Adsorptive micro-extraction techniques -Novel analytical tools for trace levels of polar solutes in aqueous media. Chromatogr. A. 2010; 1217(47): 7303-7310.
  11. Nogueira JMF. Microextração adsortiva em barra (BAµE): Um conceito analítico inovador para microextração estática. Chromatogr. 2013; 5(4): 275-283.
  12. Jeannot M, Cantwell FF. Solvent microextraction into a single drop. Chem. 1996; 68(13): 2236-2240.
  13. Pinto IP, Pedroso MP. Microextração em gota única (SDME): Fundamentos e aplicações. Chromatogr. 2015; 7(3): 183-198.
  14. Pedersen-Bjergaard S, Rasmussen KE. Liquid – liquid – liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Chem. 1999; 71(14): 2650-2656.
  15. Merib J, Carasek E, Microextração em fase líquida suportada com fibra oca (HF-LPME): Fundamentos e aplicações recentes. Chromatogr. 2013; 5(4): 249-262.
  16. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. Chromatogr. A. 2006; 1116(1-2): 1-9.
  17. Moreira BJ, Yokoya JMC, Gaitani CM. Microextração líquido-líquido dispersiva (DLLME): fundamentos, inovações e aplicações biológicas. Sci. Chromatogr. 2014; 6(3): 186-204.
  18. Toffoli AL, Lanças FM. Recentes avanços da microextração em fase sólida no tubo (in-tube SPME) e sua aplicação em análises ambientais e alimentícias. Sci. Chromatogr. 2015; 7(4): 297-315.
  19. Queiroz MEC, Melo LP, Recentes avanços da in-tube SPME-LC para bioanálises. Chromatogr. 2013; 5(3): 167-179.
  20. Ide AH, Nogueira JMF. New-generation bar adsorptive microextraction (BAµE) devices for a better eco-user-friendly analytical approach – Application for the determination of antidepressant pharmaceuticals in biological fluids. J. Pharm. Biomed. Anal. 2018; 153: 126-134.
  21. Ide AH, Nogueira JMF. Hollow fiber microextraction: A new hybrid microextraction technique for trace analysis. Anal. Bioanal. Chem. 2018; 410: 2911-2920.
  22. Nogueira JMF. Novel sorption-based methodologies for static microextraction analysis: A review on SBSE and related techniques. Anal. Chim. Acta. 2012; 757: 1-10.
  23. Nogueira JMF. Stir-bar sorptive extraction: 15 years making sample preparation more environment-friendly, TrAC. 2015; 71: 214-223.
  24. Neng NR, Nogueira JMF. Determination of short chain carbonyl compounds in drinking water matrices by bar adsorptive micro-extraction (BAµE) with in-situ Anal. Bioanal. Chem. 2010; 398: 3155-3163.
  25. Neng NR, Nogueira JMF, Determination of phenol compounds in surface water matrices by bar adsorptive microextraction-high performance liquid chromatography-diode array detection. Molecules. 2014; 19(7): 9369-9379.
  26. Neng NR, Sequeiros RCP, Nogueira JMF. Combining bar adsorptive microextraction with capillary electrophoresis-Application for the determination of phenolic acids in food matrices. Electrophoresis. 2014; 35(17): 2488-2494.
  27. Neng NR, Nogueira JMF. Monitoring trace levels of hydroxy aromatic compounds in urine matrices by bar adsorptive microextraction (BAµE). Meth. 2017; 9(36): 5260-5265.
  28. Neng NR, Mestre AS, Carvalho AP, Nogueira JMF. Powdered activated carbons as effective phases for bar adsorptive micro-extraction (BAµE) to monitor levels of triazinic herbicides in environmental water matrices. Talanta. 2011; 83(5): 1643-1649.
  29. Almeida C, Nogueira JMF. Comparison of the selectivity of different sorbent phases for bar adsorptive microextraction – Application to trace level analysis of fungicides in real matrices. J. Chromatogr. A. 2012; 1265: 7-16.
  30. Almeida C, Strzelczyk R, Nogueira JMF. Improvements on bar adsorptive microextraction (BAµE) technique – Application for the determination of insecticide repellents in environmental water matrices. 2014; 120: 126-134.
  31. Bernarda JR, Ahmad SM, Almeida C, Neng NR, Nogueira JMF. Application of bar adsorptive microextraction-large-volume injection-gas chromatography-mass spectrometric method for the determination of trace levels of agrochemicals in real matrices. Braz. Chem. Soc. 2015; 26(10): 2150-2158.
  32. Dias AN, da Silva AC, Simao V, Merib J, Carasek. A novel approach to bar adsorptive microextraction: Cork as extractor phase for determination of benzophenone, triclocarban and parabens in aqueous samples. Chim. Acta. 2015; 888: 59-66.
  33. Andrade FN, Ide AH, Neng NDR, Lanças FM, Nogueira JMF. Determination of trace levels of triazines in corn matrices by bar adsorptive microextraction with a molecularly imprinted polymer. Sep. Sci. 2016; 39(4): 756-761.
  34. Calado BB, Ahmad SM, Almeida C, Neng NR, Nogueira JMF. Determination of trace levels of irgarol in estuarine water matrices by bar adsorptive microextraction. J. Chromatogr. Sci. 2016; 54(8): 1453-1459.
  35. de Souza MP, Rizzetti TM, Francesquett JZ, Prestes OD, Zanella R. Bar adsorptive microextraction (BAµE) with a polymeric sorbent for the determination of emerging contaminants in water samples by ultra-high performance liquid chromatography with tandem mass spectrometry. Anal. Methods. 2018; 10(7): 697-705.
  36. Ahmad SM, Gomes MI, Ide AH, Neng NR, Nogueira JMF. Monitoring traces of organochlorine pesticides in herbal matrices by bar adsorptive microextraction – Application to black tea and tobacco. J. Environ. Anal. Chem. 2019; 1-15.
  37. dos Santos AL, Krause LC, Schneider JK, Nogueira, JMF, Caramão EB. Evaluation of alpha- and beta-endosulfan residues in teas and yerba mate infusions by bar adsorptive microextraction and large volume injection-gas chromatography mass spectrometry. Braz. Chem. Soc. 2020; 31(3): 550-555.
  38. Neng NR, Mestre AS, Carvalho AP, Nogueira JMF. Cork-based activated carbons as supported adsorbent materials for trace level analysis of ibuprofen and clofibric acid in environmental and biological matrices. J. Chromatogr. A. 2011; 1218(37): 6263-6270.
  39. Neng NR, Nogueira JMF. Development of a bar adsorptive micro-extraction-large-volume injection-gas chromatography-mass spectrometric method for pharmaceuticals and personal care products in environmental water matrices. Bioanal. Chem. 2012; 402(3): 1355-1364.
  40. Almeida C, Stępkowska A, Alegre A, Nogueira JMF. Determination of trace levels of benzophenone-type ultra-violet filters in real matrices by bar adsorptive micro-extraction using selective sorbent phases. J. Chromatogr. A. 2013; 1311: 1-10.
  41. Almeida C, Nogueira JMF. Determination of trace levels of parabens in real matrices by bar adsorptive microextraction using selective sorbent phases. Chromatogr. A. 2014; 1348: 17-26.
  42. Ahmad SM, Almeida C, Neng NR, Nogueira JMF. Bar adsorptive microextraction (BAµE) coated with mixed sorbent phases – Enhanced selectivity for the determination of non-steroidal anti-inflammatory drugs in real matrices in combination with capillary electrophoresis. Chromatogr. B. 2016; 1008: 115-124.
  43. Ide AH, Ahmad SM, Neng NR, Nogueira JMF. Enhancement for trace analysis of sulfonamide antibiotics in water matrices using bar adsorptive microextraction (BAµE). J. Pharm. Biomed. Anal. 2016; 129: 593-599.
  44. Ahmad SM, Ide AH, Neng NR, Nogueira JMF. Application of bar adsorptive microextraction to determine trace organic micro-pollutants in environmental water matrices. Int. J. Environ. Anal. Chem. 2017; 19
  45. Almeida C, Ahmad SM, Nogueira JMF. Bar adsorptive microextraction technique – Application for the determination of pharmaceuticals in real matrices. Anal. Bioanal. Chem. 2017; 409(8): 2093-2106.
  46. Mafra G, Oenning AL, Dias AN, Merib J, Budziak D, da Silveira CB, Carasek E. Low-cost approach to increase the analysis throughput of bar adsorptive microextraction (BAµE) combined with environmentally friendly renewable sorbent phase of recycled diatomaceous earth. 2017; 178: 886-893.
  47. Abujaber F, Ahmad SM, Neng NR, Martin-Doimeadios RCR, Bernardo, FJG, Nogueira JMF. Bar adsorptive microextraction coated with multi-walled carbon nanotube phases – Application for trace analysis of pharmaceuticals in environmental waters. Chromatogr. A. 2019; 1600: 17-22.
  48. Ahmad SM, Almeida C, Neng NR, Nogueira JMF. Application of bar adsorptive microextraction (BAµE) for anti-doping control screening of anabolic steroids in urine matrices. J. Chromatogr. B. 2014; 969: 35-41.
  49. Almeida C, Nogueira JMF. Determination of steroid sex hormones in real matrices by bar adsorptive microextraction (BAµE). Talanta. 2015; 136: 145-154.
  50. Neng NR, Ahmad SM, Gaspar H, Nogueira JMF. Determination of mitragynine in urine matrices by bar adsorptive microextraction and HPLC analysis. Talanta. 2015; 144: 105-109.
  51. Oenning AL, Mores L, Dias AN, Carasek E. A new configuration for bar adsorptive microextraction (BAµE) for the quantification of biomarkers (hexanal and heptanal) in human urine by HPLC providing an alternative for early lung cancer diagnosis. Anal. Chim. Acta. 2017; 965: 54-62.
  52. Ide AH, Nogueira JMF. Determination of hydrophilic UV filters in real matrices using new-generation bar adsorptive microextraction devices. Separations 2019; 45(6): 1-11.
  53. Ahmad SM, Nogueira JMF, High throughput bar adsorptive microextraction: A novel cost-effective tool for monitoring benzodiazepines in large number of biological samples. Talanta 2019; 199: 195-202.
  54. Ide AH, Nogueira JMF. Dual-hollow fiber microextraction (dual-HFµE) – Application for monitoring trace levels of organochlorine pesticides in real matrices. Int. J. Environ. Anal. Chem. 2019; in press
  55. Pedersen-Bjergaard S, Rasmussen KE. Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction. J. Chromatogr. A. 2008; 1184(1-2): 132-142.
  56. Jiang X, Lee HK. Solvent bar microextraction. Anal Chem. 2004; 76(18): 5591-5596.