https://dx.doi.org/10.4322/sc.2011.011

 

Cromatografia líquida capilar: 2. Alargamento das bandas por efeitos extracoluna

Coutinho, Lincoln F. M.; Lanças, Fernando M.

Palavras-chave: Cromatografia líquida capilar, alargamento de bandas, fatores extra coluna, micro LC, LC capilar.

Resumo: O alargamento da banda é um fator altamente indesejável em todas as técnicas cromatográficas, uma vez que diminui a eficiência da coluna (menor número de pratos, N) e deteriora a resolução (menor Rs). Este efeito é particularmente crítico na cromatografia líquida capilar (c-LC) devido aos pequenos volumes da instrumentação, conexões, colunas, etc., empregados na técnica. Como parte de uma série de artigos a respeito da c-LC, neste trabalho serão abordados os principais fatores que ocasionam o alargamento das bandas cromatográficas em c-LC, assim como a maneira de evitá-lo.


Referências Bibliográficas

1. Saito M, Hibi K, Ishii D, Takeuchi T. In: Ishii D, editor. Introduction to Microscale High-Performance Liquid Chromatograph. New York: VCH Publisher; 1988.
2. Knox JH. Journal of Chromatographic Science 1977; 15.:352.
3. Ishii D, Asai K, Hibi K, Jonokuchi T, Nagaya M. A study of micro-high-performance liquid chromatography: I. Development of technique for miniaturization of high-performance liquid chromatography. Journal of Chromatography A 1977; 144(2):157-68. https://dx.doi. org/10.1016/S0021-9673(00)99351-8
4. Scott RPW, Simpson CF. Journal of Chromatographic Science 1982; 20:62.
5. Vonk N, Verstraeten WP, Marinissen JW. Journal of Chromatographic Science 1992; 30:296.
6. Chervet JP, Ursem M, Salzmann JP. Instrumental Requirements for Nanoscale Liquid Chromatography. Analytical Chemistry 1996; 68:1507-12. https://dx.doi. org/10.1021/ac9508964
7. Heron S, Tchapla A, Chervet JP. Influence of injection parameters on column performance in nanoscale high-performance liquid chromatography. Chromatographia, 2000; 51:495-9. https://dx.doi. org/10.1007/BF02490492
8. Beisler AT, Schaefer KE, Weber SG. Simple method for the quantitative examination of extra column band broadening in microchromatographic systems. Journal of Chromatography A 2003; 986(2):247-51. https://dx.doi.org/10.1016/S0021-9673(02)02018-6
9. Szumski M, Buszewski B. State of the Art in Miniaturized Separation Techniques. Critical Reviews in Analytical Chemistry 2002; 32(1):1-46. https:// dx.doi.org/10.1080/10408340290765434
10. Scott RPW. Liquid Chromatography Column Theory. New York: Wiley; 1992.
11. Sternberg JC. In: Giddings JC, Keller RA, editors. Adavances in Chromatography. New York: Marcel Dekker; 1966. vol. 2, p. 205-270.
12. Martin M, Eon C, Guiochon G. Study of the pertinency of pressure in liquid chromatography: II. Problems in equipment design. Journal of Chromatography A 1975.; 108(2):229-41. https://dx.doi.org/10.1016/S0021- 9673.(00)84666-X
13. Kirkland JJ, Yau WW, Stoklosa HJ, Dilks Junior CH. Journal of Chromatographic Science 1977; 15:303.
14. Reese CE, Scott RPW. J. Chromatogr. 1980; 18:479.
15. Lauer HH, Rozing GP. The selection of optimum conditions in HPLC I. The determination of external band spreading in LC instruments. Chromatographia 1981; 14.(11):641-7. https://dx.doi.org/10.1007/BF02291104
16. DiCesare JL, Dong MW, Atwood JG. Very-high-speed liquid chromatography: II. Some instrumental factors influencing performance. Journal of Chromatography A 1981; 217:369-86. https://dx.doi.org/10.1016/S0021- 9673.(00)88091-7
17. Freebaim KW, Knox JH. Dispersion measurements on conventional and miniaturised HPLC systems. Chromatographia 1984; 19(1):37-47. https://dx.doi. org/10.1007/BF02687717
18. Hupe KP, Jonker RJ, Rozing G. Determination of band-spreading effects in high-performance liquid chromatographic instruments. Journal of Chromatography A 1984; 285:253-65. https://dx.doi. org/10.1016/S0021-9673(01)87767-0
19. Cohen KA, Stuart JD. Journal of Chromatographic Science 1987; 25:381.
20. Liu G, Svenson L, Djordjevie N, Erni F. Extra-column band broadening in high-temperature open-tubular liquid chromatography. Journal of Chromatography A 1993.; 633(1-2):25-30. https://dx.doi.org/10.1016/0021- 9673.(93)83134-E
21. Bakalyar SR, Phipps C, Spuce B, Olsen K. Choosing sample volume to achieve maximum detection sensitivity and resolution with high-performance liquid chromatography columns of 1.0, 2.1 and 4.6 mm I.D. Journal of Chromatography A 1997; 762(1-2):167‑85. https://dx.doi.org/10.1016/S0021-9673(96)00851-5
22. Prüβ A, Kempter C, Gysler J, Jira T. Extracolumn band broadening in capillary liquid chromatography. Journal of Chromatography A 2003; 1016(2):129-41. https://dx.doi.org/10.1016/S0021-9673(03)01290-1
23. Visser JPC. Recent developments in microcolumn liquid chromatography. Journal of Chromatography A 1999; 856(1-2):117-143. https://dx.doi.org/10.1016/ S0021-9673(99)00692-5
24. Claessens HA, Burcinova A, Cramers CA, Mussche P, Van Tilburg CE. Evaluation of injection systems for open tubular liquid chromatography. Journal of Microcolumn Separations 1990; 2(3):132-37. https://dx.doi.org/10.1002/mcs.1220020309
25. Harvey MC, Stearns SD, Averette JP. LC Liq. Chromatogr. HPLC Mag. 1985; 3:5.
26. Jorgenson JW, Guthrie EJ. Liquid chromatography in open-tubular columns : Theory of column optimization with limited pressure and analysis time, and fabrication of chemically bonded reversedphase columns on etched borosilicate glass capillaries Journal of Chromatography A 1983; 255:335-48. https://dx.doi.org/10.1016/S0021-9673(01)88293-5
27. Manz A, Simon W. Injectors for open-tubular column liquid chromatography with 106 theoretical plates at retention times in the minute range. Journal of Chromatography A 1987; 387:187-96. https://dx.doi. org/10.1016/S0021-9673(01)94523-6
28. Taylor G. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1953.; 219:186.
29. Taylor G. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1954.; 225:473.
30. Cazes J. Chromatography Theory. New York: Marcel Dekker Inc.; 2002.
31. Scott RPW, Kucera P. Journal of Chromatographic Science 1971; 9:641.
32. Schmauch L. J. Response Time and Flow Sensitivity of Detectors for Gas Chromatography. Analytical Chemistry 1959; 31(2):225-30. https://dx.doi.org/10.1021/ ac60146a021
33. Vandenheuvel FA. Estimation and Correction of Post- Column Dead Volume Effect in Chromatography. Analytical Chemistry 1963; 35(9):1193-98. https:// dx.doi.org/10.1021/ac60202a064
34. McWilliam IG, Bolton HC. Instrumental peak distortion. I. Relaxation time effects. Analytical Chemistry 1969; 41(13):1755-62. https://dx.doi. org/10.1021/ac60282a001.