https://dx.doi.org/10.4322/sc.2011.012

 

Algunos consejos útiles para el análisis cromatográfico de compuestos orgánicos volátiles

Stashenko, Elena E.; Martínez, Jairo R.

Palavras-chave: Cromatografía de gases, cromatografía de gases acoplada a espectrometría de masas, compuestos orgánicos volátiles.

Resumo: El análisis cromatográfico confiable de mezclas de compuestos orgánicos volátiles es el resultado de la atención cuidadosa a detalles del proceso de preparación de la muestra y de la selección del sistema cromatográfico a emplear y sus condiciones de operación. En este artículo se discuten los efectos de las principales variables que inciden en el análisis cromatográfico de compuestos orgánicos volátiles y se presentan algunas recomendaciones para varios procedimientos, junto con varios ejemplos que ilustran su aplicación.


Referências Bibliográficas

1. García C, Herrero S, Pérez JL, Moreno B. A simplified Quick, Easy, Cheap, Effective, Rugged and Safe approach for the determination of trihalomethanes and benzene, toluene, ethylbenzene and xylenes in soil matrices by fast gas chromatography with mass spectrometry detection. Analytica Chimica Acta 2011.; 689(1):129-136. PMid:21338768. https://dx.doi. org/10.1016/j.aca.2011.01.023
2. Pérez JL, Herrero S, García C, Moreno B. Programmed temperature vaporizer based method for the sensitive determination of trihalomethanes and benzene, toluene, ethylbenzene and xylenes in soils. Journal of Chromatography A 2009; 1216(32):6063- 6070.. PMid:19577756. https://dx.doi.org/10.1016/j. chroma.2009.06.057
3. Pérez JL, Herrero S, García C, Moreno B. Headspaceprogrammed temperature vaporizer-fast gas chromatography-mass spectrometry coupling for the determination of trihalomethanes in water. Journal of Chromatography A 2008; 1194(1):103- 110.. PMid:18482730. https://dx.doi.org/10.1016/j. chroma.2008.04.037
4. Zhang Z, Li G. A review of advances and new developments in the analysis of biological volatile organic compounds. Microchemical Journal 2010.; 95(2):127-139. https://dx.doi.org/10.1016/j. microc.2009.12.017
4. Wang L, Li M, Jin W, Li S, Zhang S, Yu L. Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering. Food Chemistry 2009.; 114(1):233-236. https://dx.doi.org/10.1016/j. foodchem.2008.09.044
6. Chalchat J-C, Özcan MM. Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chemistry 2008.; 110(2):501-503. https://dx.doi.org/10.1016/j. foodchem.2008.02.018
7. Stashenko E, Ordóñez SA, Marín NA, Martínez JR. Determination of the volatile and semi-volatile secondary metabolites, and aristolochic acids in Aristolochia ringens Vahl. Journal of Chromatographic Science, 2009; 47(9):817-821.
8. Pedroza MA, Zalacain A, Lara JF, Salinas MR. Global grape aroma potential and its individual analysis by SBSE-GC-MS. Food Research International 2010.; 43(4):1003-1008. https://dx.doi.org/10.1016/j. foodres.2010.01.008
9. Courtois EA, Paine CET, Blandinieres P-A, Stien D, Bessiere JM, Houel E et al. Diversity of the volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana. Journal of Chemical Ecology 2009; 35(11):1349-1362. PMid:20012675. https://dx.doi.org/10.1007/s10886-009-9718-1
10. Goodwin TE, Brown PA, Eggert MS, Evola MG, House SJ, Morshedi RG et al. Use of automated solid phase dynamic extraction (SPDE)/GC-MS and novel macros in the search for african elephant pheromones. Chemical Signals in Vertebrates 2008;11(I):25-35. https://dx.doi.org/10.1007/978-0-387-73945-8_2
11. Riu-Aumatell M, Vargas L, Vichi S, Guadayol JM, López-Tamames E, Buxaderas S. Characterisation of volatile composition of white salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled to GC-MS. Food Chemistry 2011; 129(2):557-564.
12. Sandercock PML. Fire investigation and ignitable liquid residue analysis - A review: 2001-2007. Forensic Science International 2008;176(2-3):93- 110.. PMid:17949931. https://dx.doi.org/10.1016/j. forsciint.2007.09.004
13. Monfreda M, Gregori A. Differentiation of unevaporated gasoline samples according to their brands, by SPME-GC-MS and multivariate statistical analysis. Journal of Forensic Sciences 2011.; 56(2):372-380. PMid:21265832. https://dx.doi. org/10.1111/j.1556-4029.2010.01644.x
14. Yoshida H, Kaneko T, Suzuki S. A solid-phase microextraction method for the detection of ignitable liquids in fire debris. Journal of Forensic Sciences 2008.; 53(3):668-676. PMid:18471212. https://dx.doi. org/10.1111/j.1556-4029.2008.00704.x
15. McCord B, Bottegal M, Mathis J. Mass spectrometry for the analysis of low explosives. Detection of biological agents for the prevention of bioterrorism. NATO Science for Peace and Security Series A: Chemistry and Biology 2011; 221-229. https://dx.doi. org/10.1007/978-90-481-9815-3_14
16. Dalby O, Butler D, Birkett JW. Analysis of gunshot residue and associated materials - A review. Journal of Forensic Sciences 2010; 55(4):924-943. PMid:20384934. https://dx.doi.org/10.1111/j.1556-4029.2010.01370.x
17. Hoffman EM, Curran AM, Dulgerian N, Stockham RA, Eckenrode BA. Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Science International 2009; 186(1-3):6-13. PMid:19203852. https://dx.doi.org/10.1016/j.forsciint.2008.12.022
18. Castiglioni S, Zuccato E, Chiabrando C, Fanelli R, Bagnati R. Mass spectrometric analysis of illicit drugs in wastewater and surface water. Mass Spectrometry Reviews, 2008; 27(4):378-394. PMid:18421768. https:// dx.doi.org/10.1002/mas.20168
19. Turner C. Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes. Expert Review of Molecular Diagnostics 2011.; 11(5):497-503. PMid:21707458. https://dx.doi. org/10.1586/erm.11.31
20. Song G, Qin T, Liu H, Xu GB, Pan Y-Y, Xiong F-X et al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010.; 67(2):227-231. PMid:19409642. https://dx.doi. org/10.1016/j.lungcan.2009.03.029
21. Mebazaa R, Rega B, Camel V. Analysis of human male armpit sweat after fenugreek ingestion: Characterisation of odour active compounds by gas chromatography coupled to mass spectrometry and olfactometry. Food Chemistry 2011; 128(1):227-235. https://dx.doi.org/10.1016/j.foodchem.2011.02.063
22. Soini HA, Klouckova I, Wiesler D, Oberzaucher E, Grammer K, Dixon SJ et al. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatographymass spectrometry. Journal of Chemical Ecology 2010; 36.(9):1035-1042. PMid:20809147. https://dx.doi. org/10.1007/s10886-010-9846-7
23. Probert CSJ, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. Journal of Gastrointestinal and Liver Disease 2009.;18(3):337-343. PMid:19795029.
24. Kataoka H, Saito K. Recent advances in SPME techniques in biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis 2011; 54.(5):926-950. PMid:21194868. https://dx.doi. org/10.1016/j.jpba.2010.12.010
25. Pasikanti KK, Ho PC, Chan ECY. Gas chromatography/ mass spectrometry in metabolic profiling of biological fluids. Journal of Chromatography B 2008; 871(2):202- 211.. PMid:18479983. https://dx.doi.org/10.1016/j. jchromb.2008.04.033
26. Logue BA, Hinkens DM, Baskin SI, Rockwood GA. The analysis of cyanide and its breakdown products in biological samples. Critical Reviews in Analytical Chemistry 2010; 40(2):122-147. https://dx.doi. org/10.1080/10408340903535315
27. LeDoux M. Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. Journal of Chromatography A 2011; 1218(8):1021- 1036.. PMid:21236435. https://dx.doi.org/10.1016/j. chroma.2010.12.097
28. Marriott PJ, Eyres GT, Dufour JP. Emerging opportunities for flavor analysis through hyphenated gas chromatography. Journal of Agricultural and Food Chemistry 2009; 57:9962-9971. PMid:19817416. https://dx.doi.org/10.1021/jf9013845
29. López-Feria S, Cárdenas S, Valcárcel M. Simplifying chromatographic analysis of the volatile fraction of foods. TrAC Trends in Analytical Chemistry 2008.; 27(9):794-803. https://dx.doi.org/10.1016/j. trac.2008.07.006
30. Barata A, Campo E, Malfeito-Ferreira M, Loureiro V, Cacho J, Ferreira V. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: Identification of key aroma compounds. Journal of. Agricultural and Food Chemistry 2011; 59:2543-2553. PMid:21348497. https://dx.doi.org/10.1021/jf104141f
31. Ikem A. Measurement of volatile organic compounds in bottled and tap waters by purge and trap GC-MS: Are drinking water types different? Journal of Food Composition and Analysis 2010; 23(1):70-77. https:// dx.doi.org/10.1016/j.jfca.2009.05.005
32. Zellner B, Dugo P, Dugo G, Mondello L. Gas chromatography-olfactometry in food flavour analysis. Journal of Chromatography A 2008; 1186(1-2):123- 143.. https://dx.doi.org/10.1016/j.chroma.2007.09.006
33. Linsinger TPJ, Birgersson-Liebich A, Lamberty A, Pellizzato F, Venelinov T, Voorspoels S. Development of the first certified reference materials for several brominated flame retardants in polymers. Analytical. Chemistry 2009; 81:3792-3800. https://dx.doi. org/10.1021/ac900139r
34. Kawakami T, Isama K, Matsuoka A. Analysis of phthalic acid diesters, monoester, and other plasticizers in polyvinyl chloride household products in Japan. Journal of Environmental Science and Health, Part A 2011; 46(8):855-864.
35. Odabasi M. Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products. Environmental Science and Technology 2008.; 42(5):1445-1451. https://dx.doi.org/10.1021/ es702355u
36. Salgueiro L, Martins AP, Correia H. Raw materials: the importance of quality and safety. A review. Flavour and Fragrance Journal 2010; 25(5):253-271. https:// dx.doi.org/10.1002/ffj.1973
37. Nagpal S, Karan, Upadhyay A, Bhardwaj R, Thakkar A. A review on need and importance of impurity profiling. Current Pharmaceutical Analysis 2011; 7(1):62-70. https://dx.doi.org/10.2174/157341211794708749
38. Risby TH, Solga SF. Current status of clinical breath analysis. Applied Physics B: Lasers and Optics 2006; 85.(2-3):421-426. https://dx.doi.org/10.1007/s00340- 006.-2280-4
39. Stashenko E, Martinez J. Sampling flower scent for chromatographic analysis. Journal of Separation Science 2008; 31(11):2022-2031. https://dx.doi. org/10.1002/jssc.200800151
40. Korhoňová M, Hron K, Klimčíková D, Müller L, Bednář P, Barták P. Coffee aroma—Statistical analysis of compositional data. Talanta 2009; 80(2):710-715. https://dx.doi.org/10.1016/j.talanta.2009.07.054
41. Król S, Zabiegała B, Namieśnik J. Monitoring VOCs in atmospheric air II. Sample collection and preparation. TrAC Trends in Analytical Chemistry 2010.; 29,(9):1101-1112. https://dx.doi.org/10.1016/j. trac.2010.05.010
42. Van Dam NM, Poppy GM. Why plant volatile analysis needs bioinformatics - detecting signal from noise in increasingly complex profiles. Plant Biology 2008; 10.(1):29-37. https://dx.doi.org/10.1055/s-2007-964961
43. Dincer F, Odabasi M, Muezzinoglu A. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. Journal of Chromatography A 2006; 1122(1-2):222-229. https:// dx.doi.org/10.1016/j.chroma.2006.04.075
44. Nijssen LM, Visscher CA, Maarse H, Wilemsens LC, Boelens MH. Volatile Compounds in Food. Qualitative and Quantitative Data. 7rd ed. Zeist, The Netherlands: TNO Nutrition and Food Research Institute; 1996.
45. Woolfenden E. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air: Part 1: Sorbent-based air monitoring options. Journal of Chromatography A 2010; 1217(16):2674-2684. https://dx.doi.org/10.1016/j.chroma.2009.12.042
46. Bohlin P, Jones KC, Strandberg B. Occupational and indoor air exposure to persistent organic pollutants: A review of passive sampling techniques and needs. Journal of Environmental Monioring 2007; 9:501-509. https://dx.doi.org/10.1039/b700627f
47. Stashenko E, Wong JW, Martínez JR, Mateus A, Shibamoto T. High resolution gas chromatography - nitrogen - phosphorous detection of saturated volatile aldehydes derivatized with 2-hydrazinobenzothiazole. Journal of Chromatography A 1996; 752:209. https:// dx.doi.org/10.1016/S0021-9673(96)00494-3
48. Stashenko E, Puertas MA, Salgar W, Delgado W, Martínez J. Solid-phase microextraction with on-fibre derivatisation applied to the analysis of volatile carbonyl compounds. Journal of Chromatography A 2000; 886:175- 181.. https://dx.doi.org/10.1016/S0021-9673(00)00479-9
49. Stashenko E, Macku C, Shibamoto T. Monitoring volatile chemicals formed from must during yeast fermentation. Journal of Agricultural and Food Chemistry 1992; 40(11):2257-2259. https://dx.doi. org/10.1021/jf00023a040
50. Stashenko E, Martínez JR. Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Scientia Chromatographica 2010; 2 (1):29-47.
51. Stashenko E, Martínez JR. Separar, fragmentar e integrar: la rutina de un análisis por GC-MS. Patrones de fragmentación de moléculas orgánicas. Scientia Chromatographica 2010; 2(2):23-46.
52. Stashenko E, Martínez JR. GC-MS: Más de un analizador de masas, ¿para qué?. Scientia Chromatographica 2010; 2(4):33-59.