http://dx.doi.org/10.4322/sc.2012.014

 

UHPLC – Uma abordagem atual: desenvolvimentos e desafios recentes

Maldaner, Liane; Jardim, Isabel Cristina S. F.

Palavras-chave: UHPLC, fases estacionárias, instrumentação, UHPLC × HPLC.

Resumo A cromatografia líquida de ultra eficiência (UHPLC) desenvolveu-se com a introdução das partículas de fases estacionárias (FE) porosas ≤ 2 μm, juntamente com a busca contínua por análises mais rápidas e eficientes, e fundamenta-se nos mesmos princípios de separação da cromatografia líquida de alta eficiência (HPLC). Desde a sua introdução em 2004, a UHPLC vem ganhando espaço em todas as áreas de aplicação da HPLC em decorrência de suas vantagens e, desta forma, vem sendo alvo constante de novas pesquisas, principalmente no que diz respeito a novas FE e melhorias nos equipamentos. Os principais desafios no emprego da UHPLC em comparação com a HPLC já foram identificados e juntamente com os desenvolvimentos recentes serão abordados neste artigo.


Referências Bibliográficas

1. Maldaner L, Jardim ICSF. O estado da arte da cromatografia líquida de ultra eficiência. Química Nova 2009; 32(1):214-222. http://dx.doi.org/10.1590/ S0100-40422009000100036
2. Guillarme D, Ruta J, Rudaz S, Veuthey JL. New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches. Analytical and Bioanalytical Chemistry 2010; 397:1069-1082. PMid:19998028. http://dx.doi.org/10.1007/s00216- 009.-3305-8
3. Natishan TK. Developments in fast liquid chromatographic analysis of pharmaceuticals. Journal of Liquid Chromatography & Related Technologies 2011; 34:1133-1156. http://dx.doi.org/10. 1080./10826076.2011.588058
4. Nováková L, Vlcková H. A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation. Analytica Chimica Acta 2009; 656:8-35. PMid:19932811. http:// dx.doi.org/10.1016/j.aca.2009.10.004
5. Núñez O, Gallart-Ayala H, Martins CPB, Lucci P. New trends in fast liquid chromatography for food and environmental analysis. Journal of Chromatography A 2012; 1228:298-323. PMid:22153282. http://dx.doi. org/10.1016/j.chroma.2011.10.091
6. Wang Y, Ai F, Ng SC, Tan TTY. Sub-2 μm porous silica materials for enhanced separation performance in liquid chromatography. Journal of Chromatography A 2012; 1228:99-109. PMid:21925665. http://dx.doi. org/10.1016/j.chroma.2011.08.085
7. Lanças FM. Aumentando a eficiência das colunas de HPLC por meio da diminuição do diâmetro das partículas da fase estacionária: até onde? Scientia Chromatographica 2011; 3(1):17-23. http://dx.doi. org/10.4322/sc.2011.002
8. Majors RE. New chromatography columns and accessories at Pittcon 2011:Part I. LCGC North America 2011; 29(3):218-235.
9. Majors RE. New chromatography columns and accessories at Pittcon 2012: Part I. LCGC North America 2012; 30(4):290-310.
10. Waters. HSS (High Strength Silica)Technology [cited 2012 jul.]. Available from: http://www.waters. com/waters/nav.htm?cid=134618105.
11. Waters. CSH (Charged Surface Hybrid) Technology [cited 2012 jul.]. Available from: http://www.waters. com/waters/nav.htm?cid=134618101.
12. Maldaner L, Collins CH, Jardim ICSF. Fases estacionárias modernas para cromatografia líquida de alta eficiência em fase reversa. Química Nova 2010; 33(7):1559-1568. http://dx.doi. org/10.1590/S0100-40422010000700024
13. Fekete S, Oláh E, Fekete J. Fast liquid chromatography:The domination of core–shell and very fine particles. Journal of Chromatography A 2012; 1228:57-71. PMid:21982449. http://dx.doi. org/10.1016/j.chroma.2011.09.050
14. Wang X, Barber WE, Long WJ. Applications of superficially porous particles: High speed, high efficiency or both? Journal of Chromatography A 2012; 1228:72-88. PMid:21855879. http://dx.doi. org/10.1016/j.chroma.2011.07.083
15. Majors RE. The increasing role of superficially porous particles in HPLC. LCGC North America 2010; 28(12):1014-1020.
16. Lanças FM. O renascimento das partículas superficialmente porosas (“core Shell particles”) em HPLC. Scientia Chromatographica 2010; 2(2):47-54.
17. Santos-Neto AJ. Como obter maior eficiência com partículas superficialmente porosas em HPLC. Scientia Chromatographica 2011; 3(1):65-87. http:// dx.doi.org/10.4322/sc.2011.005
18. Borges EM, Bottoli CBG, Collins CH. Possibilidades e limitações no uso da temperatura em cromatografia líquida de fase reversa. Química Nova 2010; 33(4):945-953. http://dx.doi.org/10.1590/ S0100-40422010000400033
19. ZirChrom. ZirCrom® UHPLC Columns [cited 2012 jul.] Available from: http://www.zirchrom.com/ UHPLC.asp.
20. Thermo Fisher Scientific Inc. Hypercarb High Temperature Columns [cited 2012 jul.] Available from: https://www.thermoscientific.com/ecomm/servlet/ productsdetail_11152_L11389_81922_11963008_-1.
21. Guillarme D, Schappler J, Rudaz S, Veuthey JL. Coupling ultra-high-pressure liquid chromatography with mass spectrometry. Trends in Analytical Chemistry 2010; 29(1):15-27. http://dx.doi. org/10.1016/j.trac.2009.09.008
22. Dolan JW. UHPLC tips and techniques. LCGC North America 2010; 28(11):944-950.
23. Guillarme D, Veuthey JL. Requirements for UHPLC instruments, method development in UHPLC and method transfer from regular HPLC to UHPLC [cited 2012 jul.]. Guidelines for the use of UHPLC instruments; 2009. White Paper. Available from: http:// shop.perkinelmer.com/content/applicationnotes/ wht_guidelinesforuhplcinstruments.pdf.
24. Giddings JC. Some aspects of pressureinduced equilibrium shifts in chromatography. Separation Science 1966; 1(1):73-80. http://dx.doi. org/10.1080/01496396608049435
25. Fallas MM, Neue UD, Hadley MR, McCalley DV. Investigation of the effect of pressure on retention of small molecules using reversedphase ultra-high-pressure liquid chromatography. Journal of Chromatography A 2008; 1209:195‑205. PMid:18845303. http://dx.doi.org/10.1016/j. chroma.2008.09.021
26. Fallas MM, Neue UD, Hadley MR, McCalley DV. Further investigations of the effect of pressure on retention in ultra-high-pressure liquid chromatography. Journal of Chromatography A 2010; 1217:276-284. PMid:20015498. http://dx.doi. org/10.1016/j.chroma.2009.11.041
27. Nováková L, Veuthey, JL, Guillarme, D. Practical method transfer from high performance liquid chromatography: The importance of frictional heating. Journal of Chromatography A 2011; 1218:7971‑7981. PMid:21944847. http://dx.doi.org/10.1016/j. chroma.2011.08.096
28. Gritti F, Guiochon, G. Optimization of the thermal environment of columns packed with very fine particles. Journal of Chromatography A 2009; 1216:1353-1362. PMid:19150538. http:// dx.doi.org/10.1016/j.chroma.2008.12.072
29. Wolcott RG, Dolan JW, Snyder LR, Bakalyar SR, Arnold MA, Nichols JA. Control of column temperature in reversed-phase liquid chromatography. Journal of Chromatography A 2000; 869:211-230. http://dx.doi. org/10.1016/S0021-9673(99)00894-8
30. Villiers A, Lauer H, Szucs R, Goodall S, Sandra P. Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1mm I.D. columns. Journal of Chromatography A 2006; 1113:84-91. PMid:16476437. http://dx.doi. org/10.1016/j.chroma.2006.01.120.