http://dx.doi.org/10.4322/sc.2012.005

 

A cromatografia líquida moderna e a espectrometria de massas: Finalmente “compatíveis”? II. A escolha do analisador de massas

Lanças, Fernando M.

Palavras-chave: Cromatografia líquida, HPLC, CLAE, Espectrometria de massas, LC-MS/MS.

ResumoA cromatografia líquida de alta eficiência (HPLC ou CLAE) é uma das principais técnicas utilizadas na análise de compostos não voláteis e/ou termicamente instáveis. Apesar de ser uma excelente técnica de separação, a HPLC necessita de uma técnica confirmatória quando a análise qualitativa (confirmação da identidade química) é também necessária. Dentre as várias opções existentes no momento, a espectrometria de massas (ms) é a técnica que melhor fornece as informações estruturais necessárias. O acoplamento entre estas duas técnicas dá origem a uma ferramenta analítica versátil e de grande potencial na análise qualitativa e quantitativa: a LC/MS (cromatografia líquida acoplada à espectrometria de massas). O presente artigo, segundo de uma série sobre o tema, apresenta de forma crítica e detalhada a escolha do analisar de massas para LC-MS(MS).


Referências Bibliográficas

1. Lanças FM. A Cromatografia Líquida Moderna e a Espectrometria de Massas: finalmente “compatíveis”? Scientia Chromatographica 2009; 1(2): 35-61.
2. Brunnee C. The ideal mass analyzer: Fact or fiction? International Journal of Mass Spectrometry and Ion Processes 1987; 76:125-237. http://dx.doi. org/10.1016/0168-1176(87)80030-7
3. Thomson JJ. Philosophical Magazine 1911; 20.(6):752‑67.
4. Stephens WE. Physical Review 1946; 69:691.
5. Stephens WE. Bulletin of the American Physical Society 1946; 21:22.
6. Studt T. Chromatography Techniques. 2008.
7. Mamyrin BA, Karataev VI, Shmikk DV, Zagulin VA. The mass-reflectron, a new nonmagnetic time-offlight mass spectrometer with high resolution. Soviet Physics – JETP 1973; 37:45.
8. Mamyrin BA. Time-of-flight mass spectrometry (concepts, achievements, and prospects). International Journal of Mass Spectrometry2001; 206(3):251-266. http://dx.doi.org/10.1016/S1387-3806(00)00392-4
9. Cotter R. The curved-field reflectron: PSD and CID without scanning, stepping or lifting. International Journal of Mass Spectrometry 2005; 240:169. http:// dx.doi.org/10.1016/j.ijms.2004.09.022
10. Flensburg J, Haid D, Blomberg J, Bielawski J, Ivansson D. Journal of Biochemical and Biophysical Methods 2004; 60(3):319-34. PMid:15345299.
11. Wang T-I, Chu C-W, Hung H-M, Kuo G-S, Han C-C. Design parameters of dual‐stage ion reflectrons. Review of Scientific Instruments 1994; 65:1585. http:// dx.doi.org/10.1063/1.1144896
12. Comisarow MB, Marshall AG. Fourier transform ion cyclotron resonance spectroscopy. Chemical Physics Letters 1974; 25:282-3. http://dx.doi. org/10.1016/0009-2614(74)89137-2
13. Hipple JA, Sommer H, Thomas HA. A Precise Method of Determining the Faraday by Magnetic Resonance. Physical Review, 1949; 76:1877-8. http://dx.doi. org/10.1103/PhysRev.76.1877.2
14. Marshall AG. Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development. International Journal of Mass Spectrometry 2000; 200:331-356. http://dx.doi. org/10.1016/S1387-3806(00)00324-9
15. Kingdon KH. A Method for the Neutralization of Electron Space Charge by Positive Ionization at Very Low Gas Pressures. Physical Review 1923; 21(4):408- 18.. http://dx.doi.org/10.1103/PhysRev.21.408
16. Korsunskii MI, Basakutsa VA. Soviet Physics – Technical Physics 1958; 3:1396.
17. Knight RD. Storage of ions from laser‐produced plasmas. Applied Physics Letters 1981; 38:221-4. http:// dx.doi.org/10.1063/1.92315
18. Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Analytical Chemistry 2000; 72:1156-1162. PMid:10740853. http://dx.doi.org/10.1021/ac991131p
19. Makarov A. Mass Spectrometer. Patent no. US 5886346; March 23 1999.
20. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, et al. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical Chemistry 2006; 78:2113-2120. PMid:16579588. http://dx.doi.org/10.1021/ac0518811
21. Makarov A, Denisov E, Lange O, Horning S. Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. Journal of the American Society for Mass Spectrometry 2006; 17:977-982. PMid:16750636. http://dx.doi.org/10.1016/j.jasms.2006.03.006
22. Scigelova M, Makarov A. Orbitrap mass analyzer – overview and applications in proteomics. Proteomics 2006; 6:16-21. PMid:17031791. http:// dx.doi.org/10.1002/pmic.200600528
23. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG. The Orbitrap: a new mass spectrometer. Journal of Mass Spectrometry 2005; 40:430-443. PMid:15838939. http://dx.doi.org/10.1002/jms.856
24. Perry RH, Cooks RG, Noll RJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrometry Reviews 2008; 27:661- 699.. PMid:18683895. http://dx.doi.org/10.1002/ mas.20186
25. Olsen JV, Godoy LM, Li G, Macek B, Mortensen P, Pesch R, et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & Cellular Proteomics 2005; 4:2010-2021. PMid:16249172. http:// dx.doi.org/10.1074/mcp.T500030-MCP200
26. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nature Methods 2007; 4:709-712. PMid:17721543. http:// dx.doi.org/10.1038/nmeth1060
27. Eiceman G A, Karpas Z. Ion mobility spectrometry. Boca Raton: CRC Press; 2005. http://dx.doi. org/10.1201/9781420038972
28. Sparkman DO. Mass Spectrometry Desk Reference. Pittsburgh: Global View Pub, 2006.
29. Fiehn laboratory. [cited 2013 Jan 20]. Available from: http://fiehnlab.ucdavis.edu/Seven_Golden_Rules/ Mass_Resolution.
30. School of Chemistry and Biochemistry. [cited 2013 Feb. 12]. Available from: http:ww2.chemistry.gatech. edu/~bostwick/stms/resolve.txt.
31. Murray KK, Boyd RK, Eberlin MN, Langley GJ, Li L, Naito Y. Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure and Applied Chemistry 2013; 85:1515-1609. http:// dx.doi.org/10.1351/PAC-REC-06-04-06
32. Kellman M, Wieghaus A, Muenster H, Taylor L, Glosh D. Current Trends in Mass Spectrometry 2009; 38-43.
33. Siuzdak G. The Expanding Role of Mass Spectrometry in Biotechnology. 2nd ed. MCC Press; 2006.
34. McLafferty FW, Turecek F. Interpretation of Mass Spectra. 4th ed. Sausalito: University Science Books, 1993..
35. Sparkman D. Confusion Resulting from Molecular Weight and the Nominal Mass. MS Solutions 2012; 8.
36. Brenton AG, Godfrey AR. Accurate mass measurement: terminology and treatment of data. Journal of the American Society for Mass Spectrometry 2010; 21:1821-1835. PMid:20650651. http://dx.doi.org/10.1016/j.jasms.2010.06.006
37. Webb K, Bristow ATW, Sargent M, Stein BK. Best Practice Guide: Methodology for Accurate Mass Measurement of Small Molecules. London: LGC Ltd.; 2004.
38. Barwick V, Langley JG, Mallet AI, Stein BK, Webb K. Best Practice Guide for Generating Mass Spectra. London: LGC Ltd.; 2006. PMCid:PMC1636678.
39. Bateman K, Castro-Perez J, Wrona M, Shockor JP, Yu K, Oballa R, et al. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Communications in Mass Spectrometry 2007; 21:1485- 1496.. PMid:17394128. http://dx.doi.org/10.1002/ rcm.2996
40. Tiller PR, Yu S, Bateman K, Castro-Perez J, Mcintosh I.S, Kuo Y, et al. Fractional mass filtering as a means to assess circulating metabolites in early human clinical studies. Rapid Communications in Mass Spectrometry 2008; 22:3510-3516. PMid:18853407. http://dx.doi.org/10.1002/rcm.3758
41. Tiller PR, Yu S, Castro-Perez J, Filgrove KL, Baillie TA. High-throughput, accurate mass liquid chromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a ‘first-line’ approach for metabolite identification studies. Rapid Communications in Mass Spectrometry 2008; 22:1053- 1061.. PMid:18327855. http://dx.doi.org/10.1002/ rcm.3472
42. Zhang H, Zhang D, Ray K, Zhu M. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. Journal of Mass Spectrometry 2009; 44:999-1016. PMid:19598168. http://dx.doi.org/10.1002/jms.1610
43. Zhu M, Li M, Zhang D, Ray K, Zhao W, Humphreys WG, et al. Detection and Characterization of Metabolites in Biological Matrices Using Mass Defect Filtering of Liquid Chromatography/High Resolution Mass Spectrometry Data. Drug Metabolism and Disposition 2006; 34:1722-33. PMid:16815965. http:// dx.doi.org/10.1124/dmd.106.009241
44. Zhang H, Zhu M, Ray KL, Ma L, Zhang D. Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. Rapid Communications in Mass Spectrometry 2008; 22:2082-8. PMid:18512844. http:// dx.doi.org/10.1002/rcm.3585
45. Chowdhury SK, editor. Identification and Quantification of Drugs, Metabolites and Metabolizing Enzymes by LC-MS. In: Progress in Pharmaceutical and Biomedical Analysis; 2005; Amsterdam. Amsterdam: Elsevier; 2005. v. 6. PMCid:PMC1389856.
46. Staack RF, Hopfgartner G. New analytical strategies in studying drug metabolism. Analytical and Bioanalytical Chemistry 2007; 388:1365-80. PMid:17583803. http:// dx.doi.org/10.1007/s00216-007-1367-z
47. Prakash C, Shaffer CL, Nedderman A. Analytical strategies for identifying drug metabolites. Mass Spectrometry Reviews 2007; 26:340-69. PMid:17405144. http://dx.doi.org/10.1002/mas.20128
48. Ma S, Subramanian R. Detecting and characterizing reactive metabolites by liquid chromatography/ tandem mass spectrometry. Journal of Mass Spectrometry 2006; 41:1121-39. PMid:16967439. http://dx.doi.org/10.1002/jms.1098.