Chromatographic supports and stationary phases for liquid chromatography: preparation, evolution and trends

Nazario, Carlos Eduardo D.; Lanças, Fernando M.

Palavras-chave: HPLC, chromatographic support, silica, stationary phase.

Resumo: Since the development of instrumentation for HPLC, this analytical technique has been widely employed in the separations and analysis of a large variety of compounds in different fields. In this context, research and development (R & D) area of chromatographic supports and stationary phases for HPLC have been receiving attention from researchers aiming the decrease in analysis time, increase column efficient and promote adequate selectivity. In this paper, we focused on the methods for the preparation of chromatographic supports for HPLC (especially silica-based materials) and strategies for modifying its surface in the preparation of stationary phases.

Referências Bibliográficas

1. Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography. Hoboken: Wiley; 2010.. p. 1-17.
2. Neue UD. in HPLC columns: theory, technology, and practice. New York: Wiley-VCH; 1997. p. 1-17.
3. Braithwaite A, Smith FJ. Chromatographic methods. London: Blackie Academic & Professional; 1996. p. 1-10.
4. Snyder SR, Kirkiland JJ, Glajch JL. Practical HPLC method development. New York: Wiley; 1997. p. 1-15.
5. Arshady R. Beaded polymer supports and gels: I. Manufacturing techniques. Journal of Chromatography A 1991; 586(2):181-197. http://
6. Berthod A. Silica: backbone material of liquid chromatographic column packings. Journal of Chromatography A 1991; 549:1-28. http://dx.doi. org/10.1016/S0021-9673(00)91415-8
7. Scott RPW. Silica gel and bonded phases: their production, properties and use in LC. Chichester: Wiley; 1993. p. 1-6.
8. Prado AGS, Faria EA, Padilha PM. Aplicação e modificação química da sílica gel obtida de areia. Quimica Nova 2005; 28(3):544-547. http://dx.doi. org/10.1590/S0100-40422005000300030
9. Petro M, Berek D. Polymers immobilized on silica gels as stationary phases for liquid chromatography. Chromatographia 1993; 37(9-10):549-561. http://
10. Qiu H, Liang X, Sun M, Jiang S. Development of silica-based stationary phases for high-performance liquid chromatography. Analytical and Bioanalytical Chemistry 2011; 399(10):3307-3322. PMid:21221544.
11. Maldaner L, Collins CH, Jardim ICSF. Fases estacionárias modernas para cromatografia líquida de alta eficiência em fase reversa. Quimica Nova 2010; 33.(7):1559-1568. 40422010000700024.
12. Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N. Separation efficiencies in hydrophilic interaction chromatography. Journal of Chromatography A 2008; 1184.(1-2):474-503. PMid:18294645. http://dx.doi. org/10.1016/j.chroma.2008.01.075
13. Buszewski B, Jezierska M, Wełniak M, Berek D. Survey and Trends in the Preparation of Chemically Bonded Silica Phases for Liquid Chromatographic Analysis. Journal of High Resolution Chromatography 1998; 21.(5):267-281. 4168.(19980501)21:5<267::AID-JHRC267>3.0.CO;2-7
14. Buszewski B, Kowalska S, Krupczynska K. New Generation of Chromatographic Packings and Columns for Determination of Biologically Active Compounds. Critical Reviews in Analytical Chemistry 2005; 35(2):89-116. http://dx.doi. org/10.1080/10408340500207367
15. Hiratsuka RS, Santilli CV, Pulcinelli SH. Quimica Nova 1995.; 18(2):171-180. Quimica Nova 1995; 18(2):171- 180..
16. Unger KK. Porous silica: its properties and use as support in column liquid chromatography. Amsterdam: Elsevier; 1979. p. 1-9.
17. Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. New York: Wiley; 1979. p. 1-6.
18. Rao AV, Rao AP, Kulkarni MM. Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4-n. Journal of Non-Crystalline Solids 2004.; 350:224-229. jnoncrysol.2004.06.034
19. Barrett DA, Brown VA, Watson RC, Davies MC, Shaw PN, Ritchie HJ, et al. Effects of acid treatment on the trace metal content of chromatographic silica: bulk analysis, surface analysis and chromatographic performance of bonded phases. Journal of Chromatography A 2001; 905(1-2):69-83. http://
20. Lee SG, Jang YS, Park SS, Kang BS, Moon BY, Park HC. Synthesis of fine sodium-free silica powder from sodium silicate using w/o emulsion. Materials Chemistry and Physics 2006; 100(2-3):503-506. http://
21. Park M, Menon VC, Komarneni S. Ethanol Washing Effect on Textural Properties of the Sodium Silicate- Derived Silica Xerogel. Journal of Sol-Gel Science and Technology 1998; 12(1):15-20. http://dx.doi. org/10.1023/A:1008648925228
22. Le VH, Thuc CNH, Thuc HH. Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Research Letters 2013; 58(8):1-10.
23. Essien ER, Olaniy OA, Adams LA, Shaibu RO. Sol-gel-derived porous silica: economic synthesis and characterization. Journal of Minerals and Materials Characterization and Engineering 2012; 11:976-981.
24. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968; 26(1):62- 69..
25. Chang SM, Lee M, Kim WS. Preparation of large monodispersed spherical silica particles using seed particle growth. Journal of Colloid and Interface Science 2005; 286(2):536-542. PMid:15897068. http://
26. Chou KS, Chen CC. The critical conditions for secondary nucleation of silica colloids in a batch Stöber growth process. Ceramics International 2008.; 34(7):1623-1627. ceramint.2007.07.009
27. Unger KK, Kumar D, Grün M, Büchel G, Lüdtke S, Adam T, et al. Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations. Journal of Chromatography A 2000; 892(1-2):47-55.
28. Shimura N, Ogawa M. Growth of Nanoporous Silica Spherical Particles by the Stöber Method Combined with Supramolecular Templating Approach. Bulletin of the Chemical Society of Japan 2005; 78(6):1154- 1159..
29. Keane DA, Hanrahan JP, Copley MP, Holmes JD, Morris MA. A modified Stöber process for the production of mesoporous Sub 2 micron silica microspheres; applications in HPLC. Journal of Porous Materials 2010; 17(2):145-152. http://dx.doi. org/10.1007/s10934-009-9274-7
30. Nawrocki J, Dunlap C, McCormick A, Carr PW. Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. Journal of Chromatography A 2004; 1028(1):1-30. PMid:14969280.
31. Giraldo LF, Lopez BL, Perez L, Urrego S, Sierra L, Mesa M. Mesoporous Silica Applications. Macromolecular Symposia 2007; 258:129-141. http://
32. Shiba K, Shimura N, Ogawa M. Mesoporous Silica Spherical Particles. Journal of Nanoscience and Nanotechnology 2013; 13(4):2483-2494. PMid:23763122. jnn.2013.7423
33. Hohenesche CDFV, Ehwald V, Unger KK. Development of standard operation procedures for the manufacture of n-octadecyl bonded silicas as packing material in certified reference columns for reversed-phase liquid chromatography. Journal of Chromatography A 2004; 1025(2):177-187. http://
34. Pesek JJ, Matyska MT, Dalal L. Evaluation of Hydride- Based Stationary Phases for LC-MS. Chromatographia, 2005.; 62(11-12):595-601. s10337-005-0661-1
35. Pesek JJ, Matyska MT. Hydride-based silica stationary phases for HPLC: Fundamental properties and applications. Journal of Separation Science 2005; 28.(15):1845-1854. PMid:16276778. http://dx.doi. org/10.1002/jssc.200500201
36. Tonhi E, Collins KE, Jardim ICSF, Collins CH. Fases estacionárias para cromatografia líquida de alta eficiência em fase reversa (CLAE-FR) baseadas em superfícies de óxidos inorgânicos funcionalizados. Quimica Nova 2002; 25(4):616-623. http://dx.doi. org/10.1590/S0100-40422002000400017
37. Kickelbick G. Hybrid materials. Weinheim: Wiley-VCH; 2006. p. 498. http://dx.doi. org/10.1002/9783527610495
38. Pesek JJ, Matyska MT. Modified aluminas as chromatographic supports for high-performance liquid chromatography. Journal of Chromatography A 2002.; 952(1-2):1-11. 9673.(00)00176-X
39. Buchmeiser MR. New synthetic ways for the preparation of high-performance liquid chromatography supports. Journal of Chromatography A 2001; 918(2):233-266. S0021-9673(00)00129-1
40. Nawrocki J, Rigney M, McCormick A, Carr PW. Chemistry of zirconia and its use in chromatography. Journal of Chromatography A 1993; 657(2):229-282.
41. Pesek J, Matyska M, Ramakrishnan J. Synthesis and characterization of titania based stationary phases using the silanization/hydrosilation method. Chromatographia 1997; 44(9):538-544. http://dx.doi. org/10.1007/BF02466748
42. Winkler J, Marmé S. Titania as a sorbent in normal-phase liquid chromatography. Journal of Chromatography A 2000; 888(1-2):51-62. http://
43. Akama Y, Kanno H. Liquid Chromatographie separation of polycyclic aromatic hydrocarbons with cerium(IV) oxide as packing material. Analytica Chimica Acta 1995; 309(1):153-156. http://dx.doi. org/10.1016/0003-2670(95)00058-8
44. Stella C, Rudaz S, Veuthey J, Tchapla A. Silica and other materials as supports in liquid chromatography. Chromatographic tests and their importance for evaluating these supports. Part I. Chromatographia 2001.; 53(1):S113-S131. BF02490318
45. Silva CR, Airoldi C, Collins KE, Collins CH. Preparation and characterization of a new C18 urea phase based on titanized silica. Journal of Chromatography A 2005; 1087.(1-2):29-37. PMid:16130694. http://dx.doi. org/10.1016/j.chroma.2005.03.113
46. Silva CR, Airoldi C, Collins KE, Collins CH. A new generation of more pH stable reversed phases prepared by silanization of zirconized silica. Journal of Chromatography A 2008; 1191(1-2):90- 98.. PMid:18243228. chroma.2008.01.017
47. Kaneko S, Mitsuzawa T, Ohmori S, Nakamura M, Nobuhara K, Masatani M. Separation behaviour of silica-containing mixed oxides as column packing materials for liquid chromatography. Journal of Chromatography A 1994; 669(1-2):1-7. http://dx.doi. org/10.1016/0021-9673(94)80331-5
48. Goraieb K, Collins C. Evaluation of a Doubly Zirconized Silica-Based Stationary Phase for HPLC. Chromatographia 2013; 76(15-16):899-908. http://
49. Dawkins JV, Lloyd LL, Warner FP. Chromatographic Characteristics of polymer-based high-performance liquid chromatography packings. Journal of Chromatography A 1986; 352:157-167. http://dx.doi. org/10.1016/S0021-9673(01)83376-8
50. Lanças FM. Cromatografia líquida moderna: HPLC/ CLAE. Campinas: Atomo; 2009. p. 1-14.
51. Majors RE. Advances in the Design of HPLC Packings. Lc Gc North America 2000; 18(6):586-598.
52. Kirkland JJ, Truszkowski FA, Dilks CH Jr, Engel GS. Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules. Journal of Chromatography A 2000.; 890(1):3-13. 9673.(00)00392-7
53. Kamour R, Ammar A, El-Attug M, Almog T. Development of fused-core silica HPLC columns and their recent pharmaceutical and biological applications: A review. International Journal of Pharmacy and Pharmaceutical Sciences 2013; 5(Suppl 3.):926-930.
54. Li WH, Stover HDH. Monodisperse Cross-Linked Core-Shell Polymer Microspheres by Precipitation Polymerization. Macromolecules 2000; 33(12):4354- 4360..
55. Svec F, Peters EC, Sýkora D, Fréchet JMJ. Design of the monolithic polymers used in capillary electrochromatography columns. Journal of Chromatography A 2000; 887(1-2):3-29. http://dx.doi. org/10.1016/S0021-9673(99)01232-7
56. Rouquerol J, Avnir D, Fairbrigde CW, Everett DH, Haynes JH, Pernicone N, et al. Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry 1994; 66(8):1739- 1758..
57. Svec F, Frechet JM. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Analytical Chemistry 1992; 64.(7):820-822. ac00031a022
58. Sýkora D, Svec F, Fréchet JMJ. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces. Journal of Chromatography A 1999; 852(1):297-304. http://
59. Miyabe K, Cavazzini A, Gritti F, Kele M, Guiochon G. Moment Analysis of Mass-Transfer Kinetics in C18-Silica Monolithic Columns. Analytical Chemistry 2003.; 75(24):6975-6986. PMid:14670061. http://
60. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography. Analytical Chemistry 1996; 68.(19):3498-3501. PMid:21619283. http://dx.doi. org/10.1021/ac960281m
61. Liu H, Row KH, Yang G. Monolithic Molecularly Imprinted Columns for Chromatographic Separation. Chromatographia 2005; 61(9-10):429-432. http://
62. Unger KK, Liapis AI. Adsorbents and columns in analytical high-performance liquid chromatography: A perspective with regard to development and understanding. Journal of Separation Science 2012; 35.(10-11):1201-1212. PMid:22555863. http://dx.doi. org/10.1002/jssc.201200042
63. Turiel E, Martín-Esteban A. Molecularly imprinted polymers for sample preparation: A review. Analytica Chimica Acta 2010; 668(2):87-99. PMid:20493285.
64. Xu Z, Chen S, Huang W, Fang G, Pingzhu H, Wang S. Study on an on-line molecularly imprinted solidphase extraction coupled to high-performance liquid chromatography for separation and determination of trace estrone in environment. Analytical and Bioanalytical Chemistry 2009; 393(4):1273-1279. PMid:19104786. 008.-2544-4
65. Watabe Y, Kubo T, Nishikawa T, Fujita T, Kaya K, Hosoya K. Fully automated liquid chromatography– mass spectrometry determination of 17β-estradiol in river water. Journal of Chromatography A 2006; 1120.(1-2):252-259. PMid:16460748. http://dx.doi. org/10.1016/j.chroma.2006.01.057
66. Figueiredo EC, Dias ACB, Arruda MAZ. Impressão molecular: uma estratégia promissora na elaboração de matrizes para a liberação controlada de fármacos. Revista Brasileira de Ciências Farmacêuticas 2008; 44.(3):361-375. 93322008000300005.
67. Remcho VT, Tan Z. Molecular imprint polymers recognize specific compounds and show promise as separation media, especially for chiral molecules. Analytical Chemistry 1999; 71(7):248A-255A. PMid:21649059.
68. Haginaka J. Molecularly imprinted polymers as affinity-based separation media for sample preparation. Journal of Separation Science 2009; 32.(10):1548-1565. PMid:19472278. http://dx.doi. org/10.1002/jssc.200900085
69. Collins CH, Braga GL, Bonato PS. Introdução a métodos cromatográficos. Campinas: UNICAMP; 1997.. p. 1-10.
70. Ohmacht R, Kele M, Matus Z. Polymer coated stationary phases for liquid chromatography. Chromatographia 1989; 28(1):19-23. http://dx.doi. org/10.1007/BF02290376
71. Bien-Vogelsang U, Deege A, Figge H, Köhler J, Schomburg G. Syntheses of stationary phases for reversed-phase LC using silanization and polymer coating. Chromatographia, 1984; 19(1):170-179.
72. Tonhi E, Collins KE, Collins CH. High-performance liquid chromatographic stationary phases based on poly(methyloctylsiloxane) immobilized on silica: II. Chromatographic evaluation. Journal of Chromatography A 2002; 948(1-2):109-119. http://
73. Hanson M, Unger KK. Polymer coatings as stationary phases in high-performance liquid chromatography. Trends Analytical Chemistry 1992; 11(10):368-373.
74. Gama MR, Collins CH, Bottoli CBG. Nano-Liquid Chromatography in Pharmaceutical and Biomedical Research. Journal of Chromatographic Science 2013; 51.(7):694-703. PMid:23585638. http://dx.doi. org/10.1093/chromsci/bmt023
75. Takeuchi T. Capillary columns in liquid chromatography. Analytical and Bioanalytical Chemistry 2003; 375(1):26-27. PMid:12520430.
76. Takeuchi T. Development of Capillary Liquid Chromatography. Chromatography 2005; 26(1):7-10.
77. Nguyen DTT, Guillarme D, Rudaz S, Veuthey JL. Fast analysis in liquid chromatography using small particle size and high pressure, Journal of Separation Science 2006.; 29(12):1836-1848. PMid:16970187. http://
78. MacNair JE, Patel KD, Jorgenson JW. Ultrahigh- Pressure Reversed-Phase Capillary Liquid Chromatography: Isocratic and Gradient Elution Using Columns Packed with 1.0-μm Particles. Analytical Chemistry 1999; 71(3):700-708. PMid:9989386. http://
79. Wu N, Clausen AM. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. Journal of Separation Science 2007.; 30(8):1167-1182. PMid:17595952. http://dx.doi. org/10.1002/jssc.200700026
80. Jerkovich AD, Mellors JS, Jorgenson JW. The Use of Micron-Sized Particles in Ultrahigh-Pressure Liquid Chromatography. LC-GC Europe 2003; 16(6A):20-23.
81. Jorgenson JW. Capillary Liquid Chromatography at Ultrahigh Pressures. Annual Review of Analytical Chemistry 2010; 3(1):129-150. PMid:20636037. http://
82. Xiang Y, Liu Y, Lee ML. Ultrahigh pressure liquid chromatography using elevated temperature. Journal of Chromatography A 2006; 1104(1-2):198- 202.. PMid:16376355. chroma.2005.11.118
83. Mellors JS, Jorgenson JW. Use of 1.5-μm Porous Ethyl-Bridged Hybrid Particles as a Stationary-Phase Support for Reversed-Phase Ultrahigh-Pressure Liquid Chromatography. Analytical Chemistry 2004; 76.(18):5441-5450. PMid:15362905. http://dx.doi. org/10.1021/ac049643d
84. Cintron JM, Colon LA. Organo-silica nano-particles used in ultrahigh-pressure liquid chromatography. Analyst 2002; 127(6):701-704. http://dx.doi. org/10.1039/b203236h
85. Muhlen CV, Lancas FM. Cromatografia unificada. Quimica Nova 2004; 27(5):747-753. http://dx.doi. org/10.1590/S0100-40422004000500014
86. Tong D, Bartle KD, Clifford AA. Principles and applications of unified chromatography. Journal of Chromatography A 1995; 703(1-2):17-35. http://