https://dx.doi.org/10.4322/sc.2013.011

 

Técnicas de preparo de amostra empregadas na determinação de agrotóxicos carbamatos em água e solo

Morais, Elisa Helena da C.; Begnini, Fernanda Ribeiro; Jardim, Isabel Cristina S. F.

Palavras-chave: Preparo de amostra, carbamatos, água, solo.

Resumo: Atualmente, dentre os diferentes tipos de agrotóxico aplicados na agricultura, os carbamatos têm se destacado em virtude de sua elevada eficiência, facilidade de síntese e baixo custo. No entanto, o uso desregrado desses agrotóxicos, não seguindo as Boas Práticas Agrícolas (BPA), tem levado à contaminação do meio ambiente, destacando-se o acúmulo desses compostos nas águas superficiais (rios e lagos), subterrâneas e no solo. Além disso, muitos desses agrotóxicos são tóxicos para os seres vivos, principalmente por inibirem a ação de enzimas biológicas, como as colinesterases. Nesse contexto, o monitoramento de resíduos de agrotóxicos no solo e nas águas tornou-se imprescindível para a redução do impacto ambiental e aumento da segurança da saúde humana e animal, sendo realizado através da confirmação e quantificação desses resíduos, empregando-se diferentes técnicas analíticas. As técnicas de preparo de amostra mais empregadas e modernas para determinação analítica de resíduos de agrotóxicos carbamatos serão abordadas neste artigo.


Referências Bibliográficas

1. Brasil. Lei n. 7802, de 11 de julho de 1989, regulamentada pelo decreto n. 98816. Diário Oficial da República Fedetativa do Brasil, Brasília, 12 jul. 1989. Seção 1, p. 11459.
2. Sindicato Nacional da Indústria de Produtos para Defesa Agrícola. Dados de Mercado. [cited 2013 Aug 15]. Available from: https://www.sindag.com.br/ dados_mercado.php.
3. Ahmed A, Randhawa MA, Yusuf MJ, Khalid N. Effect of Processing on Pesticide Residues in Food Crops – A Review. Journal of Agricultural Research 2011.; 49(3):379-390.
4. Alves JP Fº. Uso de Agrotóxicos no Brasil: Controle Social e Interesses Corporativos. São Paulo: Annablume; 2002.
5. Tankiewicz M, Fenik J, Biziuk M. Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC Trends in Analytical Chemistry 2010.; 29(9):1050-1063. https://dx.doi.org/10.1016/j. trac.2010.05.008
6. Santaladchaiyakit Y, Srijaranal S, Burakham R. Methodological aspects of sample preparation for the determination of carbamate residues: A review. Journal of Separation Science 2012; 35(18):2373- 2389.. PMid:22997028. https://dx.doi.org/10.1002/ jssc.201200431
7. Kamanyire R, Karalliedde L. Organophosphate toxicity and occupational exposure. Occupational Medicine 2004.; 54(2):69-75. https://dx.doi.org/10.1093/occmed/ kqh018
8. Brasil. Resolução - RDC n. 4, de 18 de janeiro de 2012. Dispõe sobre os critérios para a realização de estudos de resíduos de agrotóxicos para fins de registro de agrotóxicos no Brasil. Diário Oficial da República Fedetativa do Brasil, Brasília, 23 jan. 2012. Seção 1, p. 40.
9. Brasil. Portaria n. 2914 do Ministério da Saúde, de
12. de dezembro de 2011. Controle e Vigilância da Qualidade da Água para Consumo Humano e seu Padrão de Potabilidade. Diário Oficial da República Fedetativa do Brasil, Brasília, 4 jan. 2012. Seção 1, p. 43.
10. European Union - EU. Council Directive 98/83/EC of
3. November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities, 5 Dec 1998. L 330, p. 32.
11. European Union - EU. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union, 27 Dec 2006. L 372, p. 19.
12. Andreu V, Picó Y. Determination of pesticides and their degradation products in soil: critical review and comparison of methods. TrAC Trends in Analytical Chemistry 2004; 23(10-11):772-789. https://dx.doi. org/10.1016/j.trac.2004.07.008
13. Brondi SHG, Lanças FM. Development and validation of a multi-residue analytical methodology to determine the presence of selected pesticides in water through liquid chromatography. Journal of the Brazilian Chemical Society 2005; 16(3B):650-653. https://dx.doi.org/10.1590/S0103-50532005000400026
14. Yang Z, Liu Y, Liu D, Zhou Z. Determination of Organophosphorus Pesticides in Soil by Dispersive Liquid–Liquid Microextraction and Gas Chromatography. Journal of Chromatographic Science 2012; 50(1):15-20. PMid:22291051 PMCid:PMC3252121. https://dx.doi.org/10.1093/ chromsci/bmr011
15. Rodrigues GD, Silva LHM, Silva MCH. Alternativas verdes para o preparo de amostra e determinação de poluentes fenólicos em água. Quimica Nova 2010; 33.(6):1370-1378. https://dx.doi.org/10.1590/S0100- 40422010000600027.
16. Braibante MEF, Zappe JAA. A quimica dos agrtóxicos. Quimica Nova na Escola, 2012; 34(1):10-15.
17. Almeida FV, Centeno AJ, Bisinoti MC, Jardim WF. Substâncias tóxicas persistentes (STP) no Brasil. Quimica Nova 2007; 30(8):1976-1985. https://dx.doi. org/10.1590/S0100-40422007000800033
18. Hardman JG, Limbird LE, Gilman GA. Goodman & Gilman - As Bases Farmacológicas da Terapêutica. Rio de Janeiro: McGraw Hill; 2005.
19. Agência Nacional de Vigilância Sanitária - ANVISA. [cited 2013 Aug 16]. Available from: https://portal. anvisa.gov.br/.
20. Caldas SS, Gonçalves FF, Primel EG, Prestes OD, Martins ML, Zanella R. Principais técnicas de preparo de amostra para a determinação de resíduos de agrotóxicos em água por cromatografia líquida com detecção por arranjo de diodos e por espectrometria de massas. Quimica Nova 2011; 34(9):1604-1617. https://dx.doi.org/10.1590/S0100-40422011000900021
21. Stoytcheva M. Pesticides - Strategies for Pesticides Analysis. Rijeka: InTech; 2011.
22. Ridgway K, Lalljie SPD, Smith RM. Sample preparation techniques for the determination of trace residues and contaminants in foods. Journal of Chromatography A 2007.; 1153(1-2):36-53. PMid:17313955. https://dx.doi. org/10.1016/j.chroma.2007.01.134
23. Jensen WB. The Origin of the Soxhlet Extractor. Journal of Chemical Education 2007; 84:1913-1914. https://dx.doi.org/10.1021/ed084p1913
24. Picó Y, Fernández M, Ruiz MJ, Font G. Current trends in solid-phase-based extraction techniques for the determination of pesticides in food and environment. Journal of Biochemical and Biophysical Methods 2007.; 70(2):117-131. PMid:17175029. https://dx.doi. org/10.1016/j.jbbm.2006.10.010
25. Fuentes E, Báez ME, Labra R. Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil. Journal of Chromatography A 2007; 1169(1-2):40- 46.. PMid:17870081. https://dx.doi.org/10.1016/j. chroma.2007.08.064
26. Lanças FM. Extração em Fase Sólida (SPE). São Carlos: RiMa; 2004.
27. Hagen DF, Markell CG, Schmitt G. A. Membrane approach to solid-phase extractions. Analytica Chimica Acta 1990; 236:157-164. https://dx.doi. org/10.1016/S0003-2670(00)83309-7
28. Lanças FM. Cromatografia Líquida Moderna: HPLC/ CLAE. Campinas: Átomo; 2009.
29. Chen J, Duan C, Guan Y. Sorptive extraction techniques in sample preparation for organophosphorus pesticides in complex matrices. Journal of Chromatography B 2010.; 878(17-18):1216-1225. PMid:20378426. https:// dx.doi.org/10.1016/j.jchromb.2010.02.031
30. Zhang L, Liu S, Cui X, Pan C, Zhang A, Chen F. A review of sample preparation methods for the pesticide residue analysis in foods. Central European Journal of Chemistry 2012; 10(3):900-925. https:// dx.doi.org/10.2478/s11532-012-0034-1
31. Tarley CRT, Sotomayor MPT, Kubota LT. Polímeros biomiméticos em química analítica. Parte 2: aplicações de MIP (“Molecularly Imprinted Polymers”) no desenvolvimento de sensores químicos. Quimica Nova 2005.; 28(6):1087-1101. https://dx.doi.org/10.1590/ S0100-40422005000600025
32. Zhu X, Yang J, Su Q, Cai J, Gao Y. Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. Journal of Chromatography A 2005.; 1092(2):161-169. PMid:16199222. https://dx.doi. org/10.1016/j.chroma.2005.07.037
33. Beltran A, Borrull F, Cormackr PAG, Marcé M. Molecularly-imprinted polymers: useful sorbents for selective extractions. TrAC Trends in Analytical Chemistry 2010; 29(11):1363-1375. https://dx.doi. org/10.1016/j.trac.2010.07.020
34. Turiel E, Martín-Esteban A. Molecularly imprinted polymers for sample preparation: A review. Analytica Chimica Acta 2010; 668(2):87-99. PMid:20493285. https://dx.doi.org/10.1016/j.aca.2010.04.019
35. Masqué N, Marcé RM, Borrull F. Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction. TrAC Trends in Analytical Chemistry 2001; 20(9):477-486. https:// dx.doi.org/10.1016/S0165-9936(01)00062-0
36. Núnez O, Gallart-Ayala H, Martins CPB, Lucci P. New trends in fast liquid chromatography for food and environmental analysis. Journal of Chromatography A 2012; 1228:298-323. PMid:22153282. https://dx.doi. org/10.1016/j.chroma.2011.10.091
37. Pichon V. Solid-phase extraction for multiresidue analysis of organic contaminants in water. Journal of Chromatography A 2000; 885(1-2):195-215. https:// dx.doi.org/10.1016/S0021-9673(00)00456-8
38. Lelé SM. Sustainable development: A critical review. World Development 1991; 19(6):607-621. https:// dx.doi.org/10.1016/0305-750X(91)90197-P
39. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 1990; 62(19):2145-2148. https://dx.doi.org/10.1021/ac00218a019
40. Durovic RD, Dordevic TM, Santric LR, Gasic SM, Ignjatovic LM. Headspace solid phase microextraction method for determination of triazine and organophosphorus pesticides in soil. Journal of Environmental Science and Health, Part B 2010; 45.(7):626-632. PMid:20803366. https://dx.doi.org/10. 1080./03601234.2010.502416
41. Durovic RD, Dordevic TM, Santric LR. Liquid–Solid Sample Preparation Followed by Headspace Solid- Phase Microextraction Determination of Multiclass Pesticides in Soil. Journal of AOAC International 2012.; 95(5):1331-1337. PMid:23175962. https://dx.doi. org/10.5740/jaoacint.SGE_Durovic
42. Vas G, Vékey K. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of Mass Spectrometry 2004.; 39(3):233-254. PMid:15039931. https://dx.doi. org/10.1002/jms.606
43. Komatsu E, Vaz JM. Otimização dos parâmetros de extração para determinação multiresíduo de pesticidas em amostras de água empregando microextração em fase sólida. Quimica Nova 2004; 27(5):720-724. https:// dx.doi.org/10.1590/S0100-40422004000500008
44. Sarafraz-Yazdi A, Amiri A. Liquid-phase microextraction. TrAC Trends in Analytical Chemistry 2010.; 29(1):1-14. https://dx.doi.org/10.1016/j. trac.2009.10.003
45. Pedersen-Bjergaard S, Rasmussen KE. Liquid−Liquid− Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Analytical Chemistry 1999; 71(14):2650-2656. PMid:10424162. https://dx.doi.org/10.1021/ac990055n
46. Rasmussen KE, Pedersen-Bjergaard S. Developments in hollow fibre-based, liquid-phase microextraction. TrAC Trends in Analytical Chemistry 2004; 23(1):1-10. https://dx.doi.org/10.1016/S0165-9936(04)00105-0
47. Oliveira ARM, Magalhães IRS, Santana FJM, Bonato PS. Microextração em fase líquida (LPME): fundamentos da técnica e aplicações na análise de fármacos em fluidos biológicos. Quimica Nova 2008; 31.(3):637-644. https://dx.doi.org/10.1590/S0100- 40422008000300031.
48. Ghambarian M, Yamini Y, Esrafili A. Developments in hollow fiber based liquid-phase microextraction: principles and applications. Microchimica Acta 2012; 177.(3-4):271-294. https://dx.doi.org/10.1007/s00604- 012.-0773-x
49. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A 2006.; 1116(1-2):1-9. PMid:16574135. https://dx.doi. org/10.1016/j.chroma.2006.03.007
50. Zgola-Grzeskowiak A, Grzeskowiak T. Dispersive liquid-liquid microextraction. TrAC Trends in Analytical Chemistry 2011; 30(9):1382-1399. https:// dx.doi.org/10.1016/j.trac.2011.04.014
51. Vickackaité V, Padarauskas A. Ionic liquids in microextraction techniques. Central European Journal of Chemistry 2012; 10(3):652-674. https://dx.doi. org/10.2478/s11532-012-0023-4
52. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. Journal of Chromatography A 2009; 1216.(6):885-891. PMid:19118833. https://dx.doi. org/10.1016/j.chroma.2008.11.076
53. Pinho GP, Neves AA, Queiroz MELR, Silvério FO. Efeito de matriz na quantificação de agrotóxicos por cromatografia gasosa. Quimica Nova 2009; 32.(4):987-995. https://dx.doi.org/10.1590/S0100- 40422009000400030.
54. Martins ML, Primel EG, Caldas SS, Prestes OD, Adaime MB, Zanella R. Microextração Líquido- Líquido Dispersiva (DLLME): fundamentos e aplicações. Scientia Chromatographica 2012; 4(1):35- 51.. https://dx.doi.org/10.4322/sc.2012.004
55. Carabias-Martínez R, García-Hermida C, Rodríguez- Gonzalo E, Ruano-Miguel L. Journal of Separation Science 2005; 28(16):2130-2138. PMid:16318209. https://dx.doi.org/10.1002/jssc.200400047
56. Zhang J, Lee HK. Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography–mass spectrometry to the determination of carbamate pesticides. Journal of Chromatography A 2006; 1117.(1):31-37. PMid:16626723. https://dx.doi. org/10.1016/j.chroma.2006.03.102
57. Wei G, Li Y, Wang X. Application of dispersive liquid–liquid microextraction combined with high-performance liquid chromatography for the determination of methomyl in natural waters. Journal of Separation Science 2007; 30(18):3262- 3267.. PMid:18008284. https://dx.doi.org/10.1002/ jssc.200700291
58. He L, Wang C, Sun Y, Luo X, Zhang J, Lu K. Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for the determination of three carbamate pesticides in water samples. International Journal of Environmental Analytical Chemistry 2009; 89(6):439-448. https:// dx.doi.org/10.1080/03067310802627239
59. Wu Q, Zhou X, Li Y, Zang X, Wang C, Wang Z. Application of dispersive liquid–liquid microextraction combined with high-performance liquid chromatography to the determination of carbamate pesticides in water samples. Analytical and Bioanalytical Chemistry 2009; 393(6-7):1755-1761. PMid:19214486. https://dx.doi.org/10.1007/s00216- 009.-2625-z
60. Liu Z. M, Zang XH, Liu WH, Wang C, Wang Z. Novel method for the determination of five carbamate pesticides in water samples by dispersive liquid–liquid microextraction combined with high performance liquid chromatography. Chinese Chemical Letters 2009.; 20(2):213-216. https://dx.doi.org/10.1016/j. cclet.2008.10.047
61. Firdoz S, Ma F, Yue X, Dai Z, Kumar A, Jiang B. A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water. Talanta 2010.; 83(1):269-273. PMid:21035674. https://dx.doi. org/10.1016/j.talanta.2010.09.028
62. Khodadoust S, Hadjmohammadi M. Determination of N-methylcarbamate insecticides in water samples using dispersive liquid–liquid microextraction and HPLC with the aid of experimental design and desirability function. Analytica Chimica Acta 2011; 699.(1):113-119. PMid:21704765. https://dx.doi. org/10.1016/j.aca.2011.04.011
63. Zhou Q, Pang L, Xiao J. Ultratrace determination of carbamate pesticides in water samples by temperature controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid phase chromatography. Microchimica Acta 2011.; 173(3-4):477-483. https://dx.doi.org/10.1007/ s00604-011-0587-2
64. Vichapong J, Burakham R, Srijaranai S, Grudpan K. Room temperature imidazolium ionic liquid: A solvent for extraction of carbamates prior to liquid chromatographic analysis. Talanta 2011; 84(5):1253- 1258.. PMid:21641434. https://dx.doi.org/10.1016/j. talanta.2011.01.002
65. Lee J, Lee HK. Fully Automated Dynamic In-Syringe Liquid-Phase Microextraction and On-Column Derivatization of Carbamate Pesticides with Gas Chromatography/Mass Spectrometric Analysis. Analytical Chemistry 2011; 83(17):6856-6861. PMid:21761858. https://dx.doi.org/10.1021/ac200807d
66. Cavaliere B, Monteleone M, Naccarato A, Sindona G, Tagarelli A. A solid-phase microextraction-gas chromatographic approach combined with triple quadrupole mass spectrometry for the assay of carbamate pesticides in water samples. Journal of Chromatography A 2012; 1257:149- 157.. PMid:22907043. https://dx.doi.org/10.1016/j. chroma.2012.08.011
67. Msagati TAM, Mamba BB. Monitoring of N-methyl carbamate pesticide residues in water using hollow fibre supported liquid membrane and solid phase extraction. Physics and Chemistry of the Earth 2012.; 50-52:149-156. https://dx.doi.org/10.1016/j. pce.2012.08.016
68. Yang EY, Shin HS. Trace level determinations of carbamate pesticides in surface water by gas chromatography–mass spectrometry after derivatization with 9-xanthydrol. Journal of Chromatography A 2013.; 1305:328-332. PMid:23890551. https://dx.doi. org/10.1016/j.chroma.2013.07.055
69. Chai Y, Niu X, Chen C, Zhao H, Lan M. Carbamate Insecticide Sensing Based on Acetylcholinesterase/ Prussian Blue-Multi-Walled Carbon Nanotubes/ Screen-Printed Electrodes. Analytical Letters 2013; 46.(5):803-817. https://dx.doi.org/10.1080/00032719.2 012..733899
70. Samphao A, Suebsanoh P, Wongsa Y, Pekec B, Jitchareon J, Kalcher K. Alkaline Phosphatase Inhibition-Based Amperometric Biosensor for the Detection of Carbofuran . International Journal of Electrochemical Science 2013; 8(3):3254-3264.
71. Sánchez-Brunete C, Rodriguez A, Tadeo JL. Multiresidue analysis of carbamate pesticides in soil by sonication-assisted extraction in small columns and liquid chromatography. Journal of Chromatography A 2003; 1007(1-2):85-91. https://dx.doi.org/10.1016/ S0021-9673(03)00953-1
72. Basheer C, Alnedhary AA, Rao BSM, Lee HK. Determination of carbamate pesticides using micro-solid-phase extraction combined with high-performance liquid chromatography. Journal of Chromatography A 2009; 1216(2):211-216. PMid:19062025. https://dx.doi.org/10.1016/j. chroma.2008.11.042
73. Lu H, Lin Y, Wilson PC. Organic-Solvent-Free Extraction Method for Determination of Carbamate and Carbamoyloxime Pesticides in Soil and Sediment Samples. Bulletin of Environmental Contamination and Toxicology 2009; 83(5):621-625. PMid:19771381. https://dx.doi.org/10.1007/s00128-009-9873-7.