https://dx.doi.org/10.4322/sc.2014.002
Recent advances on in-tube SPME-LC for bioanalysis
Queiroz, Maria Eugênia C.; Melo, Lidervan P.
Palavras-chave: In-tube solid-phase microextraction, drugs, biological fluids, selective stationary phases.
Resumo: On-line in-tube SPME-LC performed continuous extraction, concentration, desorption, and injection using an autosampler. This technique is usually used in combination with high performance liquid chromatography and liquid chromatography-mass spectrometry. This technique has successfully been applied to the determination of drugs in biological fluids. In this review, the authors discuss the recent advances in the development of selective stationary phases to increase the sensitive of the chromatography methods for bioanalysis.
Referências Bibliográficas
1. Kataoka H, Ishizaki A, Nonaka Y, Saito K. Developments and applications of capillary microextraction techniques: a review. Analalytica Chimica Acta 2009; 655(1-2):8-29. PMid:19925911. https://dx.doi.org/10.1016/j.aca.2009.09.032
2. Kataoka H, Narimatsu S, Lord HL, Pawliszyn J. Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of beta-blockers and metabolites in urine and serum samples. Analytical Chemistry 1999 ; 71(19):4237- 4244.. PMid:10517146. https://dx.doi.org/10.1021/ ac990356x
3. Chaves AR, Silva BJ, Lanças FM, Queiroz ME. Biocompatible in-tube solid phase microextraction coupled with liquid chromatography-fluorescence detection for determination of interferon α in plasma samples. Journal of Chromatography A 2011; 1218.(21):3376-3381. PMid:21146827. https://dx.doi. org/10.1016/j.chroma.2010.11.039
4. Melo LP, Queiroz RHC, Queiroz MEC. Automated determination of rifampicin in plasma samples by in-tube solid-phase microextraction coupled with liquid chromatography. Journal of Chromatography B 2011; 879(24):2454-2458. PMid:21778122. https:// dx.doi.org/10.1016/j.jchromb.2011.06.041
5. Kataoka H, Matsuura E, Mitani K. Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal of Pharmaceutical Biomedical Analysis 2007; 44(1):160- 165.. PMid:17306495. https://dx.doi.org/10.1016/j. jpba.2007.01.023
6. Kataoka H, Inoue R, Yagi K, Saito K. Determination of nicotine, cotinine, and related alkaloids in human urine and saliva by automated in-tube solid-phase microextraction coupled with liquid chromatographymass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2009; 49(1):108-114. PMid:19004590. https://dx.doi.org/10.1016/j. jpba.2008.09.044
7. Saito K, Yagi K, Ishizaki A, Kataoka H. Determination of anabolic steroids in human urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2010; 52.(5):727-733. PMid:20236787. https://dx.doi. org/10.1016/j.jpba.2010.02.027
8. Lin Z, Lin Y, Sun X, Yang H, Zhang L, Chen G. One-pot preparation of a molecularly imprinted hybrid monolithic capillary column for selective recognition and capture of lysozyme. Journal of Chromatogr A 2013; 1284:8-16. PMid:23466205. https://dx.doi. org/10.1016/j.chroma.2013.02.042
9. Silva BJG, Lanças FM, Queiroz MEC. In-tube solid-phase microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of nontricyclic antidepressants in human plasma. Journal of Chromatography B 2008; 862(1-2):181- 188.. PMid:18165161. https://dx.doi.org/10.1016/j. jchromb.2007.12.006
10. Silva BJG, Lanças FM, Queiroz MEC. Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection. Journal of Chromatography A 2009; 1216(49):8590- 8597.. PMid:19879589. https://dx.doi.org/10.1016/j. chroma.2009.10.034
11. Mullett WM, Pawliszyn J. Direct Determination of Benzodiazepines in Biological Fluids by Restricted- Access Solid-Phase Microextraction. Analytical Chemistry 2002; 74(5):1081-1087. PMid:11924967. https://dx.doi.org/10.1021/ac010747n
12. Queiroz MEC, Oliveira EB, Breton F, Pawliszyn J. Immunoaffinity in-tube solid phase microextraction coupled with liquid chromatography-mass spectrometry for analysis of fluoxetine in serum samples. Journal of Chromatography A 2007; 1174(1- 2.):72-77. PMid:17936291. https://dx.doi.org/10.1016/j. chroma.2007.09.026
13. Chaves AR, Queiroz MEC. Immunoaffinity in-tube solid phase microextraction coupled with liquid chromatography with fluorescence detection for determination of interferon α in plasma samples. Journal of Chromatogr B 2013; 928:37- 43.. PMid:23602928. https://dx.doi.org/10.1016/j. jchromb.2013.03.016
14. Mayes AG, Whitcombe MJ. Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005; 57.(12):1742-1778. PMid:16225958
15. Mullett WM, Martin P, Pawliszyn J. In-tube moleculary imprinted polymer solid-phase microextraction for the selective determination of propranolol. Analytical Chemistry 2001; 73(11):2383-2389. PMid:11403276. https://dx.doi.org/10.1021/ac0100502
16. Zhang S-W, Xing J, Cai L-S, Wu C-Y. Molecularly imprinted monolith in-tube solid-phase microextraction coupled with HPLC/UV detection for determination of 8-hydroxy-2′-deoxyguanosine in urine. Analytical and Bioanalytical Chemistry 2009.; 395(2):479-487. PMid:19629452. https://dx.doi. org/10.1007/s00216-009-2964-9
17. Hu Y, Song C, Li G. Fiber-in-tube solid-phase microextraction with molecularly imprinted coating for sensitive analysis of antibiotic drugs by high performance liquid chromatography. Journal of Chromatography A 2012; 1263:21-27. PMid:23022236. https://dx.doi.org/10.1016/j.chroma.2012.09.029
18. Chaves AR, Queiroz MEC. Immunoaffinity in-tube solid phase microextraction coupled with liquid chromatography with fluorescence detection for determination of interferon α in plasma samples. Journal of Chromatography A 2013; 1318:43-48. (in press)
19. Zhang M, Wei F, Zhang Y-F, Nie J, Feng Y-Q. Novel polymer monolith microextraction using a poly(methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin II receptor antagonists in human urine by capillary zone electrophoresis. Journal of Chromatography A 2006; 1102(1-2):294- 301.. PMid:16300774. https://dx.doi.org/10.1016/j. chroma.2005.10.057
20. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Progress in Polymer Science 2010; 35.(11):1350-1375. https://dx.doi.org/10.1016/j. progpolymsci.2010.07.005
21. Katz E, Willner I. Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 2004; 5(8):1084-1104. PMid:15446731. https://dx.doi.org/10.1002/ cphc.200400193
22. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. Journal of Chromatography A 1997; 762(1-2):135-146. PMid:9098972. https://dx.doi.org/10.1016/S0021- 9673.(96)00944-2
23. Nakanishi K. Pore structure control of silica gels based on phase separation. Journal of Porous Materials 1997; 4(2):67-112. https://dx.doi. org/10.1023/A:1009627216939
24. Nakanishi K, Minakuchi H, Soga N, Tanaka N. Double pore silica gel monolith applied to liquid chromatography. Journal of Sol-Gel Science and Technology 1997; 8(1-3):547-552. https://dx.doi. org/10.1023/A:1018331101606
25. Moliner-Martínez Y, Molins-Legua C, Verdú- Andrés J, Herráez-Hernández R, Campíns-Falcó P. Advantages of monolithic over particulate columns for multiresidue analysis of organic pollutants by in-tube solid-phase microextraction coupled to capillary liquid chromatography. Journal of Chromatography A 2011.; 1218(37):6256-6262. PMid:21831385.
26. Ishizaki A, Saito K, Hanioka N, Narimatsu S, Kataoka H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatographyfluorescence detection. Journal of Chromatography A 2010.; 1217(35):5555-5563. PMid:20637468. https:// dx.doi.org/10.1016/j.chroma.2010.06.068
27. Zheng M-M, Wang S-T, Hu W-K, Feng Y-Q. In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatographymass spectrometry for automated analysis of ten antidepressants in human urine and plasma. Journal of Chromatography A 2010; 1217(48):7493- 7501.. PMid:20980013 https://dx.doi.org/10.1016/j. chroma.2010.10.002
28. Lin Z, Lin Y, Sun X, Yang H, Zhang L, Chen G. One-pot preparation of a molecularly imprinted hybrid monolithic capillary column for selective recognition and capture of lysozyme. Journal of Chromatography A 2013; 1284:8-16. PMid:23466205 https://dx.doi. org/10.1016/j.chroma.2013.02.042
29. He J, Liu Z, Ren L, Liu Y, Dou P, Qian K et al. On-line coupling of in-tube boronate affinity solid phase microextraction with high performance liquid chromatography-electrospray ionization tandem mass spectrometry for the determination of cis-diol biomolecules. Talanta 2010; 82(1):270- 276.. PMid:20685466. https://dx.doi.org/10.1016/j. talanta.2010.04.033
30. Zheng M-M, Wang S-T, Hu W-K, Feng Y-Q. In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatographymass spectrometry for automated analysis of ten antidepressants in human urine and plasma. Journal of Chromatography A 2010; 1217(48):7493- 7501.. PMid:20980013. https://dx.doi.org/10.1016/j. chroma.2010.10.002
31. Chen B, Hu B, He M, Mao X, Zu W. Synthesis of mixed coating with multi-functional groups for in-tube hollow fiber solid phase microextractionhigh performance liquid chromatography-inductively coupled plasma mass spectrometry speciation of arsenic in human urine. Journal of Chromatography A 2012; 1227:19-28. PMid:22265781. https://dx.doi. org/10.1016/j.chroma.2011.12.086
32. Zhang W, Chen Z. Mussel inspired polydopamine functionalized poly(ether ether ketone) tube for online solid-phase microextraction-high performance liquid chromatography and its application in analysis of protoberberine alkaloids in rat plasma. Journal of Chromatography A 2013; 1278:29-36. PMid:23351396. https://dx.doi.org/10.1016/j.chroma.2013.01.014.