http://dx.doi.org/10.4322/sc.2014.009

 

Acoplamiento de plataformas mesofluídicas a sistemas cromatográficos para la automatización y miniaturización del tratamiento de muestra previa a separaciones analíticas

Miró, Manuel

Palavras-chave: Sistemas meso/microfluídicos, cromatografía, preparación de muestra en chip, microextracción en fase solida, automatización.

ResumoEn este artículo se presenta el potencial de sistemas mesofluídicos denominados Lab-on-a-Valve (LOV) como la nueva generación de sistemas de flujo derivados de la combinación de plataformas micro-Flow Injection Analysis y Lab-on-a-Chip para la manipulación automática de muestras y su pretratamiento en línea previa a separaciones cromatográficas y electroforéticas. Se presta especial atención a la miniaturización de sistemas de extracción en fase sólida y su integración en la plataforma LOV permitiendo de forma completamente automatizada la renovación de dicha fase sólida para cada análisis. Mediante ejemplos representativos en el campo de análisis ambiental y biológico se detallarán las diferentes interfaces diseñadas en la bibliografía para el acoplamiento de la plataforma LOV a métodos separativos incluyendo tanto cromatografía líquida como cromatografía de gases y electroforesis capilar.


Referências Bibliográficas

1. Mitra S, editor. Sample Preparation Techniques in Analytical Chemistry. Hoboken: John Wiley and Sons; 2003. http://dx.doi.org/10.1002/0471457817
2. P.awliszyn J, Lord HL, editors. Handbook of Sample Preparation. New York: John Wiley and Sons; 2010.
3. J.ain A, Verma KK. Recent advances in applications of single-drop microextraction: A review. Analytica Chimica Acta 2011; 706(1):35-65. PMid:21995911. http://dx.doi.org/10.1016/j.aca.2011.08.022
4. P.ena-Pereira F, Lavilla I, Bendicho C. Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends in Analytical Chemistry 2010; 29(7):617-628. http://dx.doi. org/10.1016/j.trac.2010.02.016
5. M.ahugo-Santana C, Sosa-Ferrera Z, Torres-Padrón ME, Santana-Rodríguez JJ. Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants. TrAC Trends in Analytical Chemistry 2011; 30(5):731748. http:// dx.doi.org/10.1016/j.trac.2011.01.011
6. K.okosa JM. Advances in solvent-microextraction techniques. TrAC Trends in Analytical Chemistry 2013; 43:2-13. http://dx.doi.org/10.1016/j. trac.2012.09.020
7. P.edersen-Bjergaard S, Rasmussen KE. Liquidphase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. Journal of Chromatography A 2008; 1184(1-2):132-142. PMid:17889886. http:// dx.doi.org/10.1016/j.chroma.2007.08.088
8. B.ello-López MA, Ramos-Payán M, Ocaña-González JA, Fernández-Torres R, Callejón-Mochón M. Analytical Applications of Hollow Fiber Liquid Phase Microextraction (HF-LPME): A Review. Analytical Letters 2012; 45(8):804-830. http://dx.doi.org/10.1080 /00032719.2012.655676
9. G.hambarian M, Yamini Y, Esrafili A. Developments in hollow fiber based liquid-phase microextraction: principles and applications. Microchimica Acta 2012; 177(3-4):271-294. http://dx.doi. org/10.1007/s00604-012-0773-x 10 Rezaee M, Yamini Y, Faraji M. Evolution of dispersive liquid–liquid microextraction method. Journal of Chromatography A 2010; 1217(16):2342- 2357. PMid:20005521. http://dx.doi.org/10.1016/j. chroma.2009.11.088
11. Z.goła-Grześkowiak A, Grześkowiak T. Dispersive liquid-liquid microextraction TrAC Trends in Analytical Chemistry 2011; 30(9):1382-1399. http:// dx.doi.org/10.1016/j.trac.2011.04.014
12. K.ocurova L, Balogh IS, Sandrejova J, Andruch V. Recent advances in dispersive liquid–liquid microextraction using organic solvents lighter than water. A review. Microchemical Journal 2012; 102:11- 17. http://dx.doi.org/10.1016/j.microc.2011.12.002
13. P.edersen-Bjergaard S, Rasmussen KE. Electrical potential can drive liquid-liquid extraction for sample preparation in chromatography. TrAC Trends in Analytical Chemistry 2008; 27(10):934-941. http:// dx.doi.org/10.1016/j.trac.2008.08.005
14. G.jelstad A, Pedersen-Bjergaard S. Recent developments in electromembrane extraction. Analytical Methods 2013; 5:4549-4557. http://dx.doi. org/10.1039/c3ay40547h
15. G.hambarian M, Yamini Y, Esrafili A. Liquid-phase microextraction based on solidified floating drops of organic solvents. Microchimica Acta 2013; 180(7- 8):519-535. http://dx.doi.org/10.1007/ s00604-013-0969-8
16. L.in HQ, Wang JL, Zeng LJ, Li G, Sha YF, Wu D, et al. Development of solvent micro-extraction combined with derivatization. Journal of Chromatography A 2013; 1296:235-242. PMid:23688681. http://dx.doi. org/10.1016/j.chroma.2013.04.039
17. A.bdel-Rehim M. Microextraction by packed sorbent (MEPS): A tutorial. Analytica Chimica Acta. 2011; 701(2):119-128. PMid:21801877. http:// dx.doi.org/10.1016/j.aca.2011.05.037
18. M.iró M, Kradtap-Hartwell S, Jakmunee J, Grudpan K, Hansen EH. Recent developments in automatic solidphase extraction with renewable surfaces exploiting flow-based approaches. TrAC Trends in Analytical Chemistry 2008; 27(9):749-761. http://dx.doi. org/10.1016/j.trac.2008.07.003
19. M.iró M, Hansen EH. On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: A review. Analytica Chimica Acta 2013; 782:1- 11. PMid:23708278. http://dx.doi.org/10.1016/j. aca.2013.03.019 20 Pawliszyn J, editor. Handbook of solid-phase microextraction. Amsterdam: Elsevier; 2012.
21. T.heodoridis GA, Zacharis CK, Voulgaropoulos AN. Automated sample treatment by flow techniques prior to liquid-phase separations. Journal of Biochemical and Biophysical Methods 2007; 70(2):243- 252. PMid:17113153. http://dx.doi.org/10.1016/j. jbbm.2006.08.013
22. K.ubáň P, Karlberg B. Flow/sequential injection sample treatment coupled to capillary electrophoresis. A review. Analytica Chimica Acta 2009; 648(2):129- 145. PMid:19646575. http://dx.doi.org/10.1016/j. aca.2009.06.034
23. V.alcárcel M, Lucena R, Simonet BM, Cárdenas S. Flow processing devices coupled to discrete sample introduction instruments. In: Trojanowicz M, editor. Advances in Flow Methods of Analysis. Weinheim Wiley-VCH; 2008. chapt. 10, p. 265-290. http://dx.doi. org/10.1002/9783527623259.ch10
24. M.iró M, Hansen EH. Miniaturization of environmental chemical assays in flowing systems: The lab-on-avalve approach vis-à-vis lab-on-a-chip microfluidic devices. Analytica Chimica Acta 2007; 600(1-2):46- 57. PMid:17903463. http://dx.doi.org/10.1016/j. aca.2007.02.035
25. H.ansen EH, Miró M. Interfacing Microfluidic Handling with Spectroscopic Detection for Real‐ Life Applications via the Lab‐on‐Valve Platform: A Review. Applied Spectroscopy Reviews. 2008; 43:335. http://dx.doi.org/10.1080/05704920802031366
26. M.iró M, Oliveira HM, Segundo MA.. Analytical potential of mesofluidic lab-on-a-valve as a front end to column-separation systems. TrAC Trends in Analytical Chemistry 2011; 30(1):153-64. http:// dx.doi.org/10.1016/j.trac.2010.08.007
27. M.iró M, Hansen EH. Recent advances and future prospects of mesofluidic Lab-on-a-Valve platforms in analytical sciences – A critical review. Analytica Chimica Acta 2012; 750:3-15. PMid:23062425. http:// dx.doi.org/10.1016/j.aca.2012.03.049
28. O.gata Y, Scampavia L, Ruzicka J, Scott CR, Gelb MH, Turecek F. Automated Affinity Capture− Release of Biotin-Containing Conjugates Using a Lab-on-Valve Apparatus Coupled to UV/Visible and Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2002; 74(18):4702-4708. PMid:12349973. http://dx.doi.org/10.1021/ac020039h
29. L.i YJ, Ogata Y, Freeze HH, Scott CR, Turecek FE, Gelb MH. Affinity Capture and Elution/ Electrospray Ionization Mass Spectrometry Assay of Phosphomannomutase and Phosphomannose Isomerase for the Multiplex Analysis of Congenital Disorders of Glycosylation Types Ia and Ib. Analytical Chemistry 2003; 75(1):42-48. PMid:12530817. http:// dx.doi.org/10.1021/ac0205053 30 Gutzman Y, Carroll ADL, Ruzicka J. Bead injection for biomolecular assays: Affinity chromatography enhanced by bead injection spectroscopy. Analyst 2006; 131:809-815. PMid:16802026 PMCid:PMC1781929. http://dx.doi.org/10.1039/ b605112j
31. D.ecuir M, Lähdesmäki I, Carroll ADL, Ruzicka J. Automated capture and on-column detection of biotinylated DNA on a disposable solid support. Analyst 2007; 132:818-822. PMid:17646882. http:// dx.doi.org/10.1039/b705617f
32. M.iró M, Frenzel W.. Flow-through sorptive preconcentration with direct optosensing at solid surfaces for trace-ion analysis. TrAC Trends in Analytical Chemistry 2004; 23(1):11-20. http://dx.doi. org/10.1016/S0165-9936(04)00107-4
33. M.iró M, Frenzel W. A Critical Examination of Sorbent Extraction Preconcentration with Spectrophotometric Sensing in Flowing Systems. Talanta 2004; 64(2):290- 301. PMid:18969602. http://dx.doi.org/10.1016/j. talanta.2004.02.021
34. M.ai TD, Bomastyk B, Duong HA, Pham HV, Hauser PC. Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection. Analytica Chimica Acta, 2012; 727:1-7. PMid:22541815. http://dx.doi. org/10.1016/j.aca.2012.03.035
35. S.tojkovic M, Mai TD, Hauser PC. Determination of artificial sweeteners by capillary electrophoresis with contactless conductivity detection optimized by hydrodynamic pumping. Analytica Chimica Acta 2013; 787:254-259. PMid:23830447. http:// dx.doi.org/10.1016/j.aca.2013.05.039
36. W.u CH, Scampavia L, Ruzicka J. Microsequential injection: anion separations using ‘Lab-on- Valve’ coupled with capillary electrophoresis. Analyst 2002; 127:898-805. http://dx.doi.org/10.1039/ b202136f
37. W.u CH, Scampavia L, Ruzicka J. Micro sequential injection: automated insulin derivatization and separation using a lab-on-valve capillary electrophoresis system. Analyst 2003; 128:1123-1130. http://dx.doi.org/10.1039/b301622f
38. Q.uintana JB, Miró M, Estela JM, Cerdà V. Automated On-Line Renewable Solid-Phase Extraction-Liquid Chromatography Exploiting Multisyringe Flow Injection-Bead Injection Lab-on-Valve Analysis. Analytical Chemistry 2006; 78(8):2832-2840. PMid:16615800. http://dx.doi.org/10.1021/ac052256z
39. O.liveira HM, Segundo MA, Lima JLFC, Miró M, Cerdà V. On-line renewable solid-phase extraction hyphenated to liquid chromatography for the determination of UV filters using bead injection and multisyringe-lab-on-valve approach. Journal of Chromatography A 2010; 1217(22):3575-3582. PMid:20399441. http://dx.doi.org/10.1016/j. chroma.2010.03.035 40 Vichapong J, Burakham R, Srijaranai S, Grudpan K. Sequential injection-bead injection-lab-on-valve coupled to high-performance liquid chromatography for online renewable micro-solid-phase extraction of carbamate residues in food and environmental samples. Journal of Separation Science 2011; 34(13):1574- 1581. PMid:21557471. http://dx.doi.org/10.1002/ jssc.201100075
41. O.liveira HM, Segundo MA, Lima JLFC, Miró M, Cerdà V. Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs. Analytical and Bioanalytical Chemistry 2010; 397(1):77-86. PMid:20191267. http:// dx.doi.org/10.1007/s00216-010-3522-1
42. P.an JL, Zhang CJ, Zhang ZM, Li GK. Review of online coupling of sample preparation techniques with liquid chromatography. Analytica Chimica Acta 2014; 815:1- 15. In press. http://dx.doi.org/10.1016/j. aca.2014.01.017
43. B.oonjob W, Yu YL, Miró M, Segundo MA, Wang JH, Cerdà V. Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays. Analytical Chemistry 2010; 82(7):3052-3060. PMid:20218575. http://dx.doi.org/10.1021/ac100185s
44. Q.uintana JB, Boonjob W, Miró M, Cerdà V. Online Coupling of Bead Injection Lab-On-Valve Analysis to Gas Chromatography: Application to the Determination of Trace Levels of Polychlorinated Biphenyls in Solid Waste Leachates. Analytical Chemistry 2009; 81(12):4822-4830. PMid:19438246. http://dx.doi.org/10.1021/ac900409u.