http://dx.doi.org/10.4322/sc.2014.009

 

Automatic on-chip sample processing prior to chromatographic separations

Miró, Manuel

Palavras-chave: Meso/microfluidics, chromatography, on-chip sample pretreatment, microsolid-phase extraction, automation.

Resumo In this review, mesofluidic Lab-on-a-Valve (LOV) platforms as the new generation of flow systems resulting from the combination of micro-flow Injection analysis and Lab-on-a-Chip are presented for automatic handling of samples and their pretreatment prior to chromatographic and electrophoretic separations. Miniaturization and integration of on-chip solid-phase extraction procedures within LOV using disposable (single-use) sorbent is explained in detail. Interfaces designed in the literature for coupling LOV with liquid and gas chromatography and capillary electrophoresis are overviewed and exemplified via representative applications in the environmental and bioanalytical fields.


Referências Bibliográficas

1. Mitra S, editor. Sample Preparation Techniques in Analytical Chemistry. Hoboken: John Wiley and Sons; 2003. http://dx.doi.org/10.1002/0471457817
2. P.awliszyn J, Lord HL, editors. Handbook of Sample Preparation. New York: John Wiley and Sons; 2010.
3. J.ain A, Verma KK. Recent advances in applications of single-drop microextraction: A review. Analytica Chimica Acta 2011; 706(1):35-65. PMid:21995911. http://dx.doi.org/10.1016/j.aca.2011.08.022
4. P.ena-Pereira F, Lavilla I, Bendicho C. Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends in Analytical Chemistry 2010; 29(7):617-628. http://dx.doi. org/10.1016/j.trac.2010.02.016
5. M.ahugo-Santana C, Sosa-Ferrera Z, Torres-Padrón ME, Santana-Rodríguez JJ. Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants. TrAC Trends in Analytical Chemistry 2011; 30(5):731748. http:// dx.doi.org/10.1016/j.trac.2011.01.011
6. K.okosa JM. Advances in solvent-microextraction techniques. TrAC Trends in Analytical Chemistry 2013; 43:2-13. http://dx.doi.org/10.1016/j. trac.2012.09.020
7. P.edersen-Bjergaard S, Rasmussen KE. Liquidphase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. Journal of Chromatography A 2008; 1184(1-2):132-142. PMid:17889886. http:// dx.doi.org/10.1016/j.chroma.2007.08.088
8. B.ello-López MA, Ramos-Payán M, Ocaña-González JA, Fernández-Torres R, Callejón-Mochón M. Analytical Applications of Hollow Fiber Liquid Phase Microextraction (HF-LPME): A Review. Analytical Letters 2012; 45(8):804-830. http://dx.doi.org/10.1080 /00032719.2012.655676
9. G.hambarian M, Yamini Y, Esrafili A. Developments in hollow fiber based liquid-phase microextraction: principles and applications. Microchimica Acta 2012; 177(3-4):271-294. http://dx.doi. org/10.1007/s00604-012-0773-x 10 Rezaee M, Yamini Y, Faraji M. Evolution of dispersive liquid–liquid microextraction method. Journal of Chromatography A 2010; 1217(16):2342- 2357. PMid:20005521. http://dx.doi.org/10.1016/j. chroma.2009.11.088
11. Z.goła-Grześkowiak A, Grześkowiak T. Dispersive liquid-liquid microextraction TrAC Trends in Analytical Chemistry 2011; 30(9):1382-1399. http:// dx.doi.org/10.1016/j.trac.2011.04.014
12. K.ocurova L, Balogh IS, Sandrejova J, Andruch V. Recent advances in dispersive liquid–liquid microextraction using organic solvents lighter than water. A review. Microchemical Journal 2012; 102:11- 17. http://dx.doi.org/10.1016/j.microc.2011.12.002
13. P.edersen-Bjergaard S, Rasmussen KE. Electrical potential can drive liquid-liquid extraction for sample preparation in chromatography. TrAC Trends in Analytical Chemistry 2008; 27(10):934-941. http:// dx.doi.org/10.1016/j.trac.2008.08.005
14. G.jelstad A, Pedersen-Bjergaard S. Recent developments in electromembrane extraction. Analytical Methods 2013; 5:4549-4557. http://dx.doi. org/10.1039/c3ay40547h
15. G.hambarian M, Yamini Y, Esrafili A. Liquid-phase microextraction based on solidified floating drops of organic solvents. Microchimica Acta 2013; 180(7- 8):519-535. http://dx.doi.org/10.1007/ s00604-013-0969-8
16. L.in HQ, Wang JL, Zeng LJ, Li G, Sha YF, Wu D, et al. Development of solvent micro-extraction combined with derivatization. Journal of Chromatography A 2013; 1296:235-242. PMid:23688681. http://dx.doi. org/10.1016/j.chroma.2013.04.039
17. A.bdel-Rehim M. Microextraction by packed sorbent (MEPS): A tutorial. Analytica Chimica Acta. 2011; 701(2):119-128. PMid:21801877. http:// dx.doi.org/10.1016/j.aca.2011.05.037
18. M.iró M, Kradtap-Hartwell S, Jakmunee J, Grudpan K, Hansen EH. Recent developments in automatic solidphase extraction with renewable surfaces exploiting flow-based approaches. TrAC Trends in Analytical Chemistry 2008; 27(9):749-761. http://dx.doi. org/10.1016/j.trac.2008.07.003
19. M.iró M, Hansen EH. On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: A review. Analytica Chimica Acta 2013; 782:1- 11. PMid:23708278. http://dx.doi.org/10.1016/j. aca.2013.03.019 20 Pawliszyn J, editor. Handbook of solid-phase microextraction. Amsterdam: Elsevier; 2012.
21. T.heodoridis GA, Zacharis CK, Voulgaropoulos AN. Automated sample treatment by flow techniques prior to liquid-phase separations. Journal of Biochemical and Biophysical Methods 2007; 70(2):243- 252. PMid:17113153. http://dx.doi.org/10.1016/j. jbbm.2006.08.013
22. K.ubáň P, Karlberg B. Flow/sequential injection sample treatment coupled to capillary electrophoresis. A review. Analytica Chimica Acta 2009; 648(2):129- 145. PMid:19646575. http://dx.doi.org/10.1016/j. aca.2009.06.034
23. V.alcárcel M, Lucena R, Simonet BM, Cárdenas S. Flow processing devices coupled to discrete sample introduction instruments. In: Trojanowicz M, editor. Advances in Flow Methods of Analysis. Weinheim Wiley-VCH; 2008. chapt. 10, p. 265-290. http://dx.doi. org/10.1002/9783527623259.ch10
24. M.iró M, Hansen EH. Miniaturization of environmental chemical assays in flowing systems: The lab-on-avalve approach vis-à-vis lab-on-a-chip microfluidic devices. Analytica Chimica Acta 2007; 600(1-2):46- 57. PMid:17903463. http://dx.doi.org/10.1016/j. aca.2007.02.035
25. H.ansen EH, Miró M. Interfacing Microfluidic Handling with Spectroscopic Detection for Real‐ Life Applications via the Lab‐on‐Valve Platform: A Review. Applied Spectroscopy Reviews. 2008; 43:335. http://dx.doi.org/10.1080/05704920802031366
26. M.iró M, Oliveira HM, Segundo MA.. Analytical potential of mesofluidic lab-on-a-valve as a front end to column-separation systems. TrAC Trends in Analytical Chemistry 2011; 30(1):153-64. http:// dx.doi.org/10.1016/j.trac.2010.08.007
27. M.iró M, Hansen EH. Recent advances and future prospects of mesofluidic Lab-on-a-Valve platforms in analytical sciences – A critical review. Analytica Chimica Acta 2012; 750:3-15. PMid:23062425. http:// dx.doi.org/10.1016/j.aca.2012.03.049
28. O.gata Y, Scampavia L, Ruzicka J, Scott CR, Gelb MH, Turecek F. Automated Affinity Capture− Release of Biotin-Containing Conjugates Using a Lab-on-Valve Apparatus Coupled to UV/Visible and Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2002; 74(18):4702-4708. PMid:12349973. http://dx.doi.org/10.1021/ac020039h
29. L.i YJ, Ogata Y, Freeze HH, Scott CR, Turecek FE, Gelb MH. Affinity Capture and Elution/ Electrospray Ionization Mass Spectrometry Assay of Phosphomannomutase and Phosphomannose Isomerase for the Multiplex Analysis of Congenital Disorders of Glycosylation Types Ia and Ib. Analytical Chemistry 2003; 75(1):42-48. PMid:12530817. http:// dx.doi.org/10.1021/ac0205053 30 Gutzman Y, Carroll ADL, Ruzicka J. Bead injection for biomolecular assays: Affinity chromatography enhanced by bead injection spectroscopy. Analyst 2006; 131:809-815. PMid:16802026 PMCid:PMC1781929. http://dx.doi.org/10.1039/ b605112j
31. D.ecuir M, Lähdesmäki I, Carroll ADL, Ruzicka J. Automated capture and on-column detection of biotinylated DNA on a disposable solid support. Analyst 2007; 132:818-822. PMid:17646882. http:// dx.doi.org/10.1039/b705617f
32. M.iró M, Frenzel W.. Flow-through sorptive preconcentration with direct optosensing at solid surfaces for trace-ion analysis. TrAC Trends in Analytical Chemistry 2004; 23(1):11-20. http://dx.doi. org/10.1016/S0165-9936(04)00107-4
33. M.iró M, Frenzel W. A Critical Examination of Sorbent Extraction Preconcentration with Spectrophotometric Sensing in Flowing Systems. Talanta 2004; 64(2):290- 301. PMid:18969602. http://dx.doi.org/10.1016/j. talanta.2004.02.021
34. M.ai TD, Bomastyk B, Duong HA, Pham HV, Hauser PC. Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection. Analytica Chimica Acta, 2012; 727:1-7. PMid:22541815. http://dx.doi. org/10.1016/j.aca.2012.03.035
35. S.tojkovic M, Mai TD, Hauser PC. Determination of artificial sweeteners by capillary electrophoresis with contactless conductivity detection optimized by hydrodynamic pumping. Analytica Chimica Acta 2013; 787:254-259. PMid:23830447. http:// dx.doi.org/10.1016/j.aca.2013.05.039
36. W.u CH, Scampavia L, Ruzicka J. Microsequential injection: anion separations using ‘Lab-on- Valve’ coupled with capillary electrophoresis. Analyst 2002; 127:898-805. http://dx.doi.org/10.1039/ b202136f
37. W.u CH, Scampavia L, Ruzicka J. Micro sequential injection: automated insulin derivatization and separation using a lab-on-valve capillary electrophoresis system. Analyst 2003; 128:1123-1130. http://dx.doi.org/10.1039/b301622f
38. Q.uintana JB, Miró M, Estela JM, Cerdà V. Automated On-Line Renewable Solid-Phase Extraction-Liquid Chromatography Exploiting Multisyringe Flow Injection-Bead Injection Lab-on-Valve Analysis. Analytical Chemistry 2006; 78(8):2832-2840. PMid:16615800. http://dx.doi.org/10.1021/ac052256z
39. O.liveira HM, Segundo MA, Lima JLFC, Miró M, Cerdà V. On-line renewable solid-phase extraction hyphenated to liquid chromatography for the determination of UV filters using bead injection and multisyringe-lab-on-valve approach. Journal of Chromatography A 2010; 1217(22):3575-3582. PMid:20399441. http://dx.doi.org/10.1016/j. chroma.2010.03.035 40 Vichapong J, Burakham R, Srijaranai S, Grudpan K. Sequential injection-bead injection-lab-on-valve coupled to high-performance liquid chromatography for online renewable micro-solid-phase extraction of carbamate residues in food and environmental samples. Journal of Separation Science 2011; 34(13):1574- 1581. PMid:21557471. http://dx.doi.org/10.1002/ jssc.201100075
41. O.liveira HM, Segundo MA, Lima JLFC, Miró M, Cerdà V. Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs. Analytical and Bioanalytical Chemistry 2010; 397(1):77-86. PMid:20191267. http:// dx.doi.org/10.1007/s00216-010-3522-1
42. P.an JL, Zhang CJ, Zhang ZM, Li GK. Review of online coupling of sample preparation techniques with liquid chromatography. Analytica Chimica Acta 2014; 815:1- 15. In press. http://dx.doi.org/10.1016/j. aca.2014.01.017
43. B.oonjob W, Yu YL, Miró M, Segundo MA, Wang JH, Cerdà V. Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays. Analytical Chemistry 2010; 82(7):3052-3060. PMid:20218575. http://dx.doi.org/10.1021/ac100185s
44. Q.uintana JB, Boonjob W, Miró M, Cerdà V. Online Coupling of Bead Injection Lab-On-Valve Analysis to Gas Chromatography: Application to the Determination of Trace Levels of Polychlorinated Biphenyls in Solid Waste Leachates. Analytical Chemistry 2009; 81(12):4822-4830. PMid:19438246. http://dx.doi.org/10.1021/ac900409u.