Extracción selectiva y detección específica de biomarcadores saturados del petróleo

Stashenko, Elena E.; Martínez, Jairo René; Robles, Mayra

Palavras-chave: Gas Chromatography, Gas Chromatography-Mass Spectrometry, Tandem Mass Spectrometry, Triple Quadrupole, Biomarkers, Multiple Reaction Monitoring, Bituminous rock, Matrix Solid-Phase Dispersion.

Resumo: The determination of petroleum biomarkers in complex mixtures is a formidable analytical challenge. This work presents the advantageous results of the combination of the high selectivity in the extractive process, with the highly specific analysis by gas chromatography coupled to mass spectrometry with triple quadrupole. Molecular sieves employed in the matrix solid-phase dispersion technique, removed linear alkanes from the extract. In the chromatographic analysis, pulsed splitless injection and multiple reaction monitoring permitted the detection of different biomarker families with a specificity that was much higher than that achieved with the traditional procedure of Soxhlet extraction followed by GC-MS analysis with selected ion monitoring.

Referências Bibliográficas

1. R.P. Philp. Fossil Fuel Biomarkers. Applications and Spectra. Elsevier, Amsterdam, 1985.
2. K.E. Peters, J.M. Moldowan. The Biomarker Guide. Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1993.
3. K.E. Peters, C.C. Walters, J.M. Moldowan. The Biomarker Guide. Volume I. Biomarkers and Isotopes in the Environment and Human History, Second Edition, Cambridge University Press, Cambridge, UK, 2005.
4. K.E. Peters, C.C. Walters, J.M. Moldowan. The Biomarker Guide. Volume II. Biomarkers and Isotopes in Petroleum Exploration and Earth History, Second Edition, Cambridge University Press, Cambridge, UK, 2005.
5. S. Killops, V. Killops. Introduction to Organic Geochemistry, Second Edition, Blackwell Publishing, Malden, MA, USA, 2005.
6. McKenna, A, Donald, L, Fitzsimmons, J, Juyal, P, Spicer, V, Standing, K, Marshall, A, Rodgers, R. Heavy petroleum composition. 3. Asphaltene aggregation. Energy & Fuels, 27, 1246-1256 (2013). DOI: 10.1021/ef3018578.
7. McKenna, A, Marshall, A, Rodgers, R. Heavy petroleum composition. 4. Asphaltene compositional space. Energy & Fuels, 27, 1257-1267 (2013). DOI: 10.1021/ef301747d.
8. Podgorski, D, Corilo, Y, Nyadong, L, Lobodin, V, Bythell, B, Robbins, W, McKenna, A, Marshall, A, Rodgers, R. Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed. Energy & Fuels, 27, 1268-1276 (2013). DOI: 10.1021/ef30173f
9. Hostettler, F, Lorenson, T, Bekins, B. Petroleum fingerprinting with organic markers. Environmental Forensics, 14, 262-277 (2013). DOI: 10.1080/15275922.2013.843611.
10. Sephton, A, Hazen, R. On the origins of deep hydrocarbons. Reviews in Mineralogy & Geochemistry, 75, 449-465 (2013). DOI: 10.2138/rmg.2013.75.14.
11. Le Métayer, P, Grice, K, Chow, C, Caccetta, L, Maslen, E, Dawson, D, Fusetti, L. The effect of origin and genetic processes of low molecular weight aromatic hydrocarbons in petroleum on their stable carbon isotopic compositions. Organic Geochemistry, 72, 23-33 (2014). DOI: 10.1016/j.orggeochem.2014.04.008.
12. López-Rodríguez, C, Stadnitskaia, A, De Lange, G, Martínez-Ruíz, F, Comas, M, Sinninghe, J. Origin of lipid biomarkers in mud volcanoes from the Alboran Sea, western Mediterranean. Biogeosciences, 11, 3187-3204 (2014). DOI: 10.5194/bg-11-31872014.
13. Galperin, Y, Kaplan, I. Review of Microbial processes in the near surface environment and their implications for the chemical fingerprinting of hydrocarbon fuels. Environmental Forensics, 12, 236-252 (2011). DOI: 10.1080/15275922.2011.595049.
14. Hughes, W, Holba, A, Dzou, L. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59, 3581-3598 (1995). DOI: 10.1016/0016-7037(95)00225-O.
15. Sivan, P, Datta, G, Singh, R. Aromatic biomarkers as indicators of source, depositional environment, maturity and secondary migration in the oils of Cambay Basin, India. Organic Geochemistry, 39, 1620-1630 (2008). DOI: 10.1016/j. orggeochem.2008.06.009.
16. Summons, R, Jahnke, L, Hope, J, Logan, G. 2-Methylpropanoids as biomarkers for cyanobacterial oxygen photosynthesis. Nature, 400, 554-557 (1999). DOI: 10.1038/23005.
17. El Diasty, W, Moldowan, J. The Western desert versus Nile delta: A comparative molecular biomarker study. Marine and Petroleum Geology, 46, 319-334 (2013). DOI: 10.1016/j.marpetgeo.2013.07.003.
18. El Diasty, W, Moldowan, J. Application of biological markers in the recognition of the geochemical characteristics of some crude oils from Abu Ghradig basin, north Western desert – Egypt. Marine and Petroleum Geology, 35, 28-40 (2012). DOI: 10.1016/j. marpetgeo.2012.03.001.
19. Maslen, E, Grice, K, Le Métayer, P, Dawson, D, Edwards, D. Stable carbon isotopic compositions of individual aromatic hydrocarbons as source and age indicators in oils from western Australian basins. Organic Geochemistry, 42, 387–398 (2011). DOI: 10.1016/j.orggeochem.2011.02.005.
20. Wang, G, Cheng, B, Wang, T, Simoneit, B, Shi, S, Wang, P. Monoterpanes as molecular indicators to diagnose depositional environments for source rocks of crude oils and condensates. Organic Geochemistry, 72, 59–68 (2014). DOI: 10.1016/j. orggeochem.2014.05.004.
21. Adedosu, T, Sonibare, O, Tuo, J, Ekundayo O. Biomarkers, carbon isotopic composition and source rock potentials of Awgu coals, middle Benue trough, Nigeria. Journal of African Earth Sciences, 66–67, 13–21 (2012). DOI: 10.1016/j.jafrearsci.2012.03.006. Scientia Chromatographica 2014; 6(4):251-268
22. Jia, W, Wang, Q, Peng, P, Xiao, Z, Li, B. Isotopic compositions and biomarkers in crude oils from the Tarim Basin: Oil maturity and oil mixing. Organic Geochemistry, 57, 95–106 (2013). DOI: 10.1016/j.orggeochem.2013.01.002.
23. Li, S, Amrani, A, Pang, X, Yang, H, Said-Ahmad, W, Zhang, B, Pang, Q. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78, 1-22 (2015). DOI: 10.1016/j.orggeochem.2014.10.004.
24. Soares, R, Pereira, R, Silva, R, Mogollón, L, Azevedo, D. Comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry: new biomarker parameter proposition for the characterization of biodegraded oil. Journal of the Brazilian Chemical Society, 24, 1570-1581 (2013). DOI: 10.5935/0103-5053.20130198.
25. Mulabagal, V, Yin, F, John, G, Hayworth, J, Clement, T. Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline. Marine Pollution Bulletin, 70, 147-154 (2013). DOI: 10.1016/j. marpolbull.2013.02.026.
26. Gómez-Carracedo M, Ferré J, Andrade J, Fernández-Varela R, Boqué R. Objective chemical fingerprinting of oil spills by partial least-squares discriminant analysis. Analytical and Bioanalytical Chemistry, 403, 2027-2037 (2012). DOI: 10.1007/s00216-0126008-5.
27. Neuparth, T, Moreira, S, Santos, M, Reis-Henriques, M. Review of oil and HNS accidental spills in Europe: Identifying major environmental monitoring gaps and drawing priorities. Marine Pollution Bulletin, 64, 1085-1095 (2012). DOI: 10.1016/j. marpolbull.2012.03.016.
28. Wang, Z, Yang, C, Yang, Z, Hollebone, B, Brown, C, Landriault, M, Sun, J, Mudge, S, Kelly-Hooper, F, Dixon, D. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples. Journal of Environmental Monitoring, 14, 2367-2381 (2012). DOI: 10.1039/C2EM30339F.
29. Akande, W. A review of experimental procedures of gas chromatography-mass spectrometry (GC-MS) and possible sources of analytical errors. Earth Science, 1, 1-9 (2012). DOI: 10.11648/ 30. Bastow, T, van Aarsen, B, Lang, D. Rapid small-scale separation of saturate, aromatic and polar components in petroleum. Organic Geochemistry, 38, 1235-1250 (2007). DOI: 10.1016/j.orggeochem.2007.03.004.
31. Huang, L, Zhang, S, Wang, H, Fu, X, Zhang, W, Xu, Y, Wei, C. A novel method for isolation of diamondoids from crude oils for compound-specific isotope analysis. Organic Geochemistry, 42, 566-571 (2011). DOI: 10.1016/j.orggeochem.2011.02.010.
32. ASTM D6560. 2012. Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products. American Society for Testing and Materials.
33. ASTM D2007-11.2011.Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method, ASTM. htm
34. Olariu, R, Vione, D, Grinberg, N, Arsene, C. Sample preparation for trace analysis by chromatographic methods. Journal of Liquid Chromatography & Related Technologies, 33, 1174-1207 (2010). DOI: 10.1080/10826076.2010.484371.
35. Sherman, L, Waldbauer, J, Summons, R. Improved methods for isolating and validating indigenous biomarkers in Precambrian rocks. Organic Geochemistry, 38, 1987–2000 (2007). DOI: 10.1016/j.orggeochem.2007.08.012.
36. Lee, M, Li, W, Lazar, I, Wan, Y, Butala, S, Shen, Y, Malik, A. Determination of volatile hydrocarbons in coals and shales using supercritical fluid extraction and chromatography. Energy & Fuels, 11, 945-950 (1997). DOI: 10.1021/ef960176f.
37. Stashenko, E, Martínez, J, Castrillón, J. Aplicación del método de dispersión de matriz en fase sólida al aislamiento de hidrocarburos de rocas bituminosas. Boletín de Geología, 36, 29-35 (2014).
38. Willsch, H, Clegg, H, Horsfield, B, Radke, M, Wilkes, H. Liquid chromatographic separation of sediment, rock, and coal extracts and crude oil into compound classes. Analytical Chemistry, 69, 4203–4209 (1997). DOI: 10.1021/ac9703818.
39. Yang, Z, Yang, C, Wang, Z, Hollebone, B, Landriault, M, Brown, C. Oil fingerprinting analysis using commercial solid phase extraction (SPE) cartridge and gas chromatography-mass spectrometry (GC-MS). Analytical Methods, 3, 628-635 (2011). DOI: 10.1039/C0AY00715C.
40. Turiel, E, Martín-Esteban, A. Molecularly imprinted polymers for sample preparation: A review. Analytica Chimica Acta, 668, 87–99 (2010). DOI: 10.1016/j.aca.2010.04.019.
41. Barman, B, Cebolla, V, Membrado, L. Chromatographic techniques for petroleum and related products. Critical Reviews in Analytical Chemistry, 30, 75-120 (2000). DOI: 10.1080/10408340091164199. Scientia Chromatographica 2014; 6(4):251-268 267
42. Ventura, G, Simoneit, B, Nelson, R, Reddy, C. The composition, origin and fate of complex mixtures in the maltene fractions of hydrothermal petroleum assessed by comprehensive two-dimensional gas chromatography. Organic Geochemistry, 45, 48–65 (2012). DOI: 10.1016/j.orggeochem.2012.01.002.
43. Middleton, W. Gradient-elution chromatography using ultraviolet monitors in the analytical fractionation of heavy petroleums. Analytical Chemistry, 39, 1839–1846 (1967). DOI: 10.1021/ac50157a056.
44. Beens, J, Brinkman, U. The role of gas chromatography in compositional analyses in the petroleum industry. TrAC Trends in Analytical Chemistry, 19, 260–275 (2000). DOI: 10.1016/S0165-9936(99)00205-8.
45. Hegazi, A, Andersson, J. Limitations to GC-MS determination of sulfur-containing polycyclic aromatic compounds in geochemical, petroleum, and environmental investigations. Energy & Fuels, 21, 3375–3384 (2007). DOI: 10.1021/ef700362v.
46. Panda, S, Andersson, J, Schrader, W. Mass-spectrometric analysis of complex volatile and nonvolatile crude oil components: a challenge. Analytical and Bioanalytical Chemistry, 389, 1329 –1339 (2007). DOI: 10.1007/s00216-007-1583-6.
47. Grice, K, de Mesmay, R, Glucina, A, Wang, S. An improved and rapid 5A molecular sieve method for gas chromatography isotope ratio mass spectrometry of n-alkanes (C8–C30+). Organic Geochemistry, 39, 284–288 (2008). DOI: 10.1016/j. orggeochem.2007.12.009.
48. West, N, Alexander, R, Kagi, R. The use of silicalite for rapid isolation of branched and cyclic alkane fractions of petroleum. Organic Geochemistry, 15, 499–501 (1990). DOI: 10.1016/0146-6380(90)90095-H.
49. Tolosa, I, Ogrinc, N. Utility of 5 Å molecular sieves to measure carbon isotope ratios in lipid biomarkers. Journal of Chromatography A, 1165, 172-181 (2007). DOI: 10.1016/j.chroma.2007.07.046.
50. Xu S, Sun, Y. An improved method for the micro-separation of straight chain and branched/cyclic alkanes: Urea inclusion paper layer chromatography. Organic Geochemistry, 36, 1334–1338 (2005). DOI: 10.1016/j.orggeochem.2005.04.003.
51. Dimmler, A, Strausz, O. Enrichment of polycyclic terpenoid, saturated hydrocarbons from petroleum by adsorption on zeolite NaX. Journal of Chromatography A, 270, 219–225 (1983). DOI: 10.1016/S0021-9673(01)96367-8.
52. Wang, Z, Fingas, M. Development of oil hydrocarbon fingerprinting and identification techniques. Marine Pollution Bulletin, 47, 423–452 (2003). DOI: 10.1016/S0025-326X(03)00215-7.
53. Xian F, Hendrickson, C, Marshall, A. High resolution mass spectrometry. Analytical Chemistry, 84, 708–719 (2012). DOI: 10.1021/ac203191t.
54. Thomson, B, Douglas, D, Corr, J, Hager, J, Jolliffe, C. Improved collisionally activated dissociation efficiency and mass resolution on a triple quadrupole mass spectrometer system. Analytical Chemistry, 67, 1696–1704 (1995). DOI: 10.1021/ac00106a008.
55. Kandiah, M, Urban, P. Advances in ultrasensitive mass spectrometry of organic molecules. Chemical Society Reviews, 42, 52995322 (2013). DOI: 10.1039/C3CS35389C.
56. Philp P, Oung, J. Biomarkers occurence, utility, and detection. Analytical Chemistry, 60, 887A–896A (1988). DOI: 10.1021/ ac00166a720.
57. Nizio, K, McGinitie, T, Harynuk, J. Comprehensive multidimensional separations for the analysis of petroleum. Journal of Chromatography A, 1255, 12-23 (2012). DOI: 10.1016/j.chroma.2012.01.078.
58. Kiepper, A, Casilli, A, Azevedo, D. Depositional paleoenvironment of Brazilian crude oils from unusual biomarkers revealed using comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry. Organic Geochemistry, 70, 62–75 (2014). DOI: 10.1016/j.orggeochem.2014.03.005.
59. Klein, G, Angström, A, Rodgers, R, Marshall, A. Use of saturates/aromatics/resins/asphaltenes (SARA) fractionation to determine matrix effects in crude oil analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 20, 668–672 (2006). DOI: 10.1021/ef050353p.
60. Eiserbeck, C, Nelson, R, Grice, K, Curiale, J, Reddy, C. Comparison of GC–MS, GC–MRM-MS, and GC × GC to characterise higher plant biomarkers in Tertiary oils and rock extracts. Geochimica et Cosmochimica Acta, 87, 299–322 (2012). DOI: 10.1016/j.gca.2012.03.033.
61. Barker, S. Matrix solid-phase dispersion. Journal of Chromatography A, 885, 115–127 (2000). DOI: 10.1016/S00219673(00)00249-1.
62. Bogialli, S, Di Corcia, A. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from foodstuffs. Journal of Biochemical and Biophysical Methods, 70, 163–179 (2007). DOI: 10.1016/j.jbbm.2006.07.007.
63. Capriotti, A, Cavaliere, C, Giansanti, P, Gubbiotti, R, Samperi, R, Laganà, A. Recent developments in matrix solid-phase dispersion extraction. Journal of Chromatography A, 1217, 2521–2532 (2010). DOI: 10.1016/j.chroma.2010.01.030.