Direct chiral separations of third generation b-blockers through high performance liquid chromatography: a review

Singh, Anil Kumar; Pallastrelli, Michele Bacchi; Santoro, Maria Inês Rocha Miritello

Palavras-chave: Chiral separations, HPLC, Chiral stationary phases, Third generation β-blockers.

Resumo: High performance liquid chromatography with chiral stationary phase (CSPs) is a predominant enantiomeric separation technique, widely used in the separation and analysis of chiral drugs. Wide ranges of chiral selectors of natural and synthetic origin have been studied and are effectively employed in enantioseparation of drugs and chemical compounds in diverse matrixes, including pharmaceuticals and biological fluids using either HPLC or CE. This review covers development and application in direct chiral separation of third generation β-blockers through high performance liquid chromatography using chiral stationary phases.

Referências Bibliográficas

1. Kasai, H. F., Tsubuki, M., Matsuo, S. & Honda, T. Sub- and supercritical chiral separation of racemic compounds on columns with stationary phases having different functional groups. Chem. Pharm. Bull. (Tokyo). 53, 1270–1276 (2005).
2. Eriksson, T., Björkman, S. & Höglund, P. Clinical pharmacology of thalidomide. Eur. J. Clin. Pharmacol. 57, 365–376 (2001).
3. Hideshima, T. et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96, 2943–2950 (2000).
4. Beesley, T. E. & Lee, J. T. Method Development and Optimization of Enantioseparations Using Macrocyclic Glycopeptide Chiral Stationary Phases. Chiral Sep. Tech. A Pract. Approach, Third Ed. 1–28 (2007). doi:10.1002/9783527611737.ch1
5. Rentsch, K. M. The importance of stereoselective determination of drugs in the clinical laboratory. J. Biochem. Biophys. Methods 54, 1–9 (2002).
6. FDA. Drugs Development of New Stereoisomeric Drugs. (1992). at
7. Santoro, M. I. R. M.; Singh, A. K. Development and regulation of chiral drug substances: an overview on worldwide pharmaceutical guidelines. Rev. Bras. Ciências Farm. 37, 259–268 (2001).
8. Mehvar, R. & Brocks, D. R. Stereospecific pharmacokinetics and pharmacodynamics of β-adrenergic blockers in humans. J. Pharm. Pharm. Sci. 4, 185–200 (2001).
9. Reddy, I. K. & Mehvar, R. Chirality in Drug Design and Development. (CRC Press, 2004). doi:10.1201/9780203021811
10. Thompson, R. A practical guide to HPLC enantioseparations for pharmaceutical compounds. J. Liq. Chromatogr. Relat. Technol. 28, 1215–1231 (2005).
11. Gübitz, G. & Schmid, M. G. Chiral separation by chromatographic and electromigration techniques. A review. Biopharm. Drug Dispos. 22, 291–336 (2001).
12. Helfand M, Peterson K, Christensen V, Dana T, T. S. Drug Class Review on Beta Adrenergic Blockers. Drug Class Reviews (2009). at
13. Consolim-Colombo FM, Irigoyen MC, K. E. in Hipertensão (ed. Brandão AA, Amodeo C, Nobre F, F. F.) 59–65 (Elsevier Ltd, 2006).
14. Weir, M. R. Beta-blockers in the treatment of hypertension: are there clinically relevant differences? Postgrad. Med. 121, 90–98 (2009).
15. Batlouni, M. & Albuquerque, D. C. de. Bloqueadores beta-adrenérgicos na insuficiência cardíaca. Arq. Bras. Cardiol. 75, 339– 349 (2000).
16. Borchard, U. Pharmacological properties of β-adrenoceptor blocking drugs.pdf. J. Clin. Basic Cardiol. 1, 5–9 (1998).
17. Firmida, C. D. C. & Mesquita, E. T. O paradoxo do tratamento do ICC com betabloqueadores. Implicaçäo para pacientes hipertensos. Rev. bras. Hipertens 8, 458–465 (2001).
18. Broeders, M. a et al. Nebivolol: a third-generation β-blocker that augments vascular nitric oxide release: endothelial β(2)adrenergic receptor-mediated nitric oxide production. Circulation 102, 677–684 (2000).
19. Bristow, M. R. β-adrenergic receptor blockade in chronic heart failure. Circulation 101, 558–569 (2000).
20. Bristow, M. R., Roden, R. L., Lowes, B. D., Gilbert, E. M. & Eichhorn, E. J. The role of third-generation β-blocking agents in chronic heart failure. Clin. Cardiol. 21, I3–I13 (1998).
21. Sweetman, S. C. Martindale: The Complete Drug Reference. (Pharmaceutical Press, 2011).
22. Moffat, A.C.; Osselton, M.D.; Widdop, B. Clarke’s analysis of drugs and poisons. (2003). doi:10.1080/00450618.2011.620006
23. Cheng, J. W. M. Nebivolol: a third-generation β-blocker for hypertension. Clin. Ther. 31, 447–462 (2009).
24. Aboul-Enein, H. Y. High-performance liquid chromatographic enantioseparation of drugs containing multiple chiral centers on polysaccharide-type chiral stationary phases. J. Chromatogr. A 906, 185–193 (2001).
25. Cockcroft JR, Chowienczyk PJ, Brett SE, Chen CP, Dupont AG, Van Nueten L, Wooding SJ, Ritter JM. Nebivolol vasodilates human forearm vasculature: evidence for an L-arginine/NO-dependent mechanism. J. Pharmacol. Exp. Ther. 274, 1067-1071 (1995).
26. Janssen WJ, X. R. and J. P. Animal pharmacology of nebivolol. Clin. Drug Investig. 3, 13–19 (1991). Scientia Chromatographica 2015; 7(1):65-84 81
27. Michael R. Bristow, J. D. P. Methods and compositions involving (S)-bucindolol. (2011). at
28. Magiera, S., Adolf, W. & Baranowska, I. Simultaneous chiral separation and determination of carvedilol and 5′-hydroxyphenyl carvedilol enantiomers from human urine by high performance liquid chromatography coupled with fluorescent detection. Cent. Eur. J. Chem. 11, 2076–2087 (2013).
29. VanDenBosch, C., Massart, D. L. & Lindner, W. Evaluation of six chiral stationary phases in LC for their selectivity towards drug enantiomers. J. Pharm. Biomed. Anal. 10, 895–908 (1992).
30. Younes, A. a., Mangelings, D. & Vander Heyden, Y. Chiral separations in normal-phase liquid chromatography: Enantioselectivity of recently commercialized polysaccharide-based selectors. Part II. Optimization of enantioselectivity. J. Pharm. Biomed. Anal. 56, 521–537 (2011).
31. Mosiashvili, L., Chankvetadze, L., Farkas, T. & Chankvetadze, B. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases. J. Chromatogr. A 1317, 167–174 (2013).
32. Ates, H., Mangelings, D. & Vander Heyden, Y. Chiral separations in polar organic solvent chromatography: Updating a screening strategy with new chlorine-containing polysaccharide-based selectors. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 875, 57–64 (2008).
33. De Klerck, K., Mangelings, D., Clicq, D., De Boever, F. & Vander Heyden, Y. Combined use of isopropylamine and trifluoroacetic acid in methanol-containing mobile phases for chiral supercritical fluid chromatography. J. Chromatogr. A 1234, 72–79 (2012).
34. Saito, M. et al. Enantioselective and highly sensitive determination of carvedilol in human plasma and whole blood after administration of the racemate using normal-phase high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 843, 73–77 (2006).
35. Dingenen, J. Polysaccharide phases in enatioseparation. In: A Practical Approach To Chiral Separations By Liquid Chromatography (ed. G. Subramanian) 147–150 (VCH, 1994).
36. Younes, A. a., Mangelings, D. & Vander Heyden, Y. Chiral separations in normal-phase liquid chromatography: Enantioselectivity of recently commercialized polysaccharide-based selectors. Part II. Optimization of enantioselectivity. J. Pharm. Biomed. Anal. 56, 521–537 (2011).
37. Vandenbosch, C., Lindner, W. & Massart, D. L. Evaluation of the enantioselectivity of an ovomucoid and a cellulase chiral stationary phase towards a set of β blocking agents. Anal. Chim. Acta 270, 1–12 (1992).
38. Younes, A. a., Mangelings, D. & Vander Heyden, Y. Chiral separations in reversed-phase liquid chromatography: Evaluation of several polysaccharide-based chiral stationary phases for a separation strategy update. J. Chromatogr. A 1269, 154–167 (2012).
39. Ji, B. Chiral separation of carvedilol enantiomers by HPLC using chiralcel. Fenxi Ceshi Xuebao 26, 585–586 (2007).
40. Medvedovici, A. et al. Achiral-chiral LC/LC-FLD coupling for determination of carvedilol in plasma samples for bioequivalence purposes. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 850, 327–335 (2007).
41. Clohs, L. & McErlane, K. M. Comparison between capillary electrophoresis and high-performance liquid chromatography for the stereoselective analysis of carvedilol in serum. J. Pharm. Biomed. Anal. 31, 407–412 (2003).
42. Vandenbosch, C., Hamoir, T., Massart, D. L. & Lindner, W. Evaluation of the enantioselectivity towards β-blocking agents of the α1-glycoprotein type chiral stationary phase: Chiral AGP glycoprotein type chiral stationary phase: Chiral AGP. Chromatographia 33, 454–462 (1992).
43. Poggi, J. C. et al. Analysis of carvedilol enantiomers in human plasma using chiral stationary phase column and liquid chromatography with tandem mass spectrometry. Chirality 24, 209–214 (2012).
44. Fairhurst, R. E., Chassaing, C., Venn, R. F. & Mayes, A. G. A direct comparison of the performance of ground, beaded and silicagrafted MIPs in HPLC and Turbulent Flow Chromatography applications. Biosensors and Bioelectronics 20, 1098–1105 (2004).
45. Chang, S. C., Reid, G. L., Chen, S., Chang, C. D. & Armstrong, D. W. Evaluation of a new polar—organic high-performance liquid chromatographic mobile phase for cyclodextrin-bonded chiral stationary phases. TrAC Trends Anal. Chem. 12, 144–153 (1993).
46. Dakers, J. M., Boulton, D. W. & Fawcett, J. P. Sensitive chiral high-performance liquid chromatographic assay for labetalol in biological fluids. J. Chromatogr. B Biomed. Appl. 704, 215–220 (1997).
47. Doroudian, a, Yeleswaram, K., Rurak, D. W., Abbott, F. S. & Axelson, J. E. Sensitive high-performance liquid chromatographic method for direct separation of labetalol stereoisomers in biological fluids using an alpha 1-acid glycoprotein stationary phase. J. Chromatogr. 619, 79–86 (1993).
48. Xu, B. J., Zhang, D. T., Shen, B. C. & Xu, X. Z. Enantioseparation of seven amino alcohols on teicoplanin chiral column. Chinese J. Anal. Chem. 35, 55–60 (2007).
49. Zhang, Y. & McConnell, O. Simulated moving columns technique for chiral liquid chromatography. J. Chromatogr. A 1028, 227–238 (2004).
50. Barbato, F., Carpentiero, C., Grumetto, L. & La Rotonda, M. I. Enantioselective retention of β-blocking agents on human serum albumin and α1-acid glycoprotein HPLC columns: Relationships with different scales of lipophilicity. Eur. J. Pharm. Sci. 38, 472–478 (2009).
51. Chassaing, C. & Thienpont, A. Regioselective carbamoylated and benzoylated cellulose for the separation of enantiomers in highperformance liquid chromatography. J. Chromatogr. A 738, 157–167 (1996).
52. Zhong, Q. et al. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by highperformance liquid chromatography. J. Chromatogr. A 1115, 19–45 (2006).
53. Zhao, J. et al. Preparation and application of rifamycin-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilylappended silica particles as chiral stationary phase for high-performance liquid chromatography. Talanta 83, 286–290 (2010).
54. Schill, G., Wainer, I. W. & Barkan, S. a. Chiral separations of cationic and anionic drugs on an alpha 1-acid glycoprotein-bonded stationary phase (EnantioPac). II. Influence of mobile phase additives and pH on chiral resolution and retention. J. Chromatogr. 365, 73–88 (1986).
55. Aboul-Enein, H. Y. & Ali, I. in Methods in molecular biology (Clifton, N.J.) (ed. Gerald Gübitz, M. G. S.) 243, 183–196 (2004).
56. Castells, C. B. & Carr, P. W. Fast enantioseparations of basic analytes by high-performance liquid chromatography using cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia stationary phases. J. Chromatogr. A 904, 17–33 (2000).
57. Felix, G. Regioselectively modified polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A 906, 171–184 (2001).
58. Grellet, J., Michel-Gueroult, P., Ducint, D. & Saux, M. C. Sensitive high-performance liquid chromatographic method for the determination of labetalol diastereoisomers in plasma samples without derivatization. J. Chromatogr. B Biomed. Appl. 652, 59–66 (1994).
59. Carvalho, T. M. D. J. P. et al. Stereoselective analysis of labetalol in human plasma by LC-MS/MS: Application to pharmacokinetics. Chirality 21, 738–744 (2009).
60. Wang, Y., Young, D. J., Tan, T. T. Y. & Ng, S. C. ‘ Click’ preparation of hindered cyclodextrin chiral stationary phases and their efficient resolution in high performance liquid chromatography. J. Chromatogr. A 1217, 7878–7883 (2010).
61. Welch, C. J. & Perrin, S. R. Improved chiral stationary phase for β-blocker enantioseparations. J. Chromatogr. A 690, 218–225 (1995).
62. Hermansson, J. Enantiomeric separation of drugs and related compounds based on their interaction with α1-acid glycoprotein. TrAC Trends Anal. Chem. 8, 251–259 (1989).
63. Al-Othman, Z. a. & Ali, I. Rapid and economic chiral-HPLC method of nebivolol enantiomers resolution in dosage formulation. Biomed. Chromatogr. 26, 775–780 (2012).
64. Ali, I. & Aboul-Enein, H. Y. Enantioseparation of some clinically used drugs by HPLC using cellulose Tris (3,5-dichlorophenylcarbamate) chiral stationary phase. Biomed. Chromatogr. 17, 113–117 (2003).
65. De Klerck, K., Vander Heyden, Y. & Mangelings, D. Generic chiral method development in supercritical fluid chromatography and ultra-performance supercritical fluid chromatography. J. Chromatogr. A 1363, 311–322 (2014).
66. Ghanem, A., Hoenen, H. & Aboul-Enein, H. Y. Application and comparison of immobilized and coated amylose tris-(3,5dimethylphenylcarbamate) chiral stationary phases for the enantioselective separation of β-blockers enantiomers by liquid chromatography. Talanta 68, 602–609 (2006).
67. Ali, I., Saleem, K., Gaitonde, V. D., Aboul-Enein, H. Y. & Hussain, I. Chiral separations of some β-adrenergic agonists and antagonists on AmyCoat column by HPLC. Chirality 22, 24–28 (2010).
68. Neves, D. V., Vieira, C. P., Coelho, E. B., Marques, M. P. & Lanchote, V. L. Stereoselective analysis of nebivolol isomers in human plasma by high-performance liquid chromatography-tandem mass spectrometry: Application in pharmacokinetics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 940, 47–52 (2013).
69. Kirkland, K. M. Optimization of chiral selectivity on cellulose-based high-performance liquid chromatographic columns using aprotic mobile-phase modifiers. J. Chromatogr. A 718, 9–26 (1995).
70. Tang, Y. Significance of mobile phase composition in enantioseparation of chiral drugs by HPLC on a cellulose-based chiral stationary phase. Chirality 8, 136–142 (1996).
71. Singh, A. K., Kedor-Hackmann, E. R. M. & Santoro, M. I. R. M. Enantiomeric separation and quantitative determination of propranolol enantiomers in pharmaceutical preparations by chiral liquid chromatography. Rev. Bras. Ciências Farm. 40, 301–308 (2004).
72. Okamoto, Y., Kawashima, M., Hatada, K. Chromatographic resolution. 11. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica-gel. J. Chromatogr. 363, 173–186 (1986).
73. Okamoto, Y., Kawashima, M., Hatada, K. Useful chiral packing materials for high-performance liquid-chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica-gel. J. Am. Chem. Soc. 106, 5357–5359 (1984).
74. Hermansson, J. & Eriksson, M. Direct Liquid Chromatographic Resolution of Acidic Drugs Using a Chiral α1-Acid Glycoprotein Column (Enantiopac®). J. Liq. Chromatogr. Relat. Technol. 9, 621–639 (1986).
75. Ward, T. J. & Farris, A. B. Chiral separations using the macrocyclic antibiotics: A review. J. Chromatogr. A 906, 73–89 (2001).
76. Nyström, A., Strandberg, A., Aspegren, A., Behr, S. & Karlsson, A. Use of immobilized amyloglucosidase as chiral selector in chromatography. Immobilization and performance in liquid chromatography. Chromatographia 50, 209–214 (1999).