http://dx.doi.org/10.4322/sc.2015.022

 

Técnicas de preparo de amostras biológicas com interesse forense

Bordin, Dayanne Cristiane Mozaner; Monedeiro, Fernanda F. da Silva Souza; Campos, Eduardo Geraldo de; Alves, Marcela Nogueira Rabelo; Bueno, Laís Helena Picolo

Palavras-chave: toxicologia forense, amostras biológicas, matrizes alternativas, preparo de amostra.

Resumo: As análises toxicológicas forenses caracterizam-se pela investigação de compostos de interesse forense, em especial drogas de abuso, em diversas matrizes biológicas. As características particulares de cada matriz determinam quais técnicas de preparo de amostra são requeridas, ainda, cada qual possui a esta associadas vantagens e limitações, que devem ser observadas pelo analista. São aspectos fundamentais a consideração do intervalo de concentração do analito na amostra, a janela de detecção, a complexidade e o conhecimento de como se dá a distribuição da droga pesquisada na matriz. Já as técnicas de preparo de amostra a serem utilizadas devem ser escolhidas também com base em sua capacidade de pré-concentração do analito, além da disponibilidade de materiais específicos, tempo e custo. O presente artigo visa delinear as principais matrizes biológicas utilizadas em Toxicologia Forense assim como as técnicas, clássicas e recentes, empregadas no preparo dessas amostras.


Referências Bibliográficas

1. S. Jickells, A. Negrusz. Clarke’s Analytical Forensic Toxicology. London, Pharmaceutical Press (2008).
2. V. Samanidou, L. Kovatsi, D. Fragou, K.Rentifis. Novel strategies for sample preparation in forensic toxicology. Bioanalysis. 3:2019-2046 (2011).
3. E. Gallardo, J. Queiroz. The role of alternative specimens in toxicological analysis. Biomed. Chromat. 8: 795-821 (2008).
4. B. Steven Karch. Toxicology of Abused Drugs. 216 p (2007).
5. A.W. Jones, A. Holmgren, F. C. Kugelberg. Concentrations of scheduled prescription drugs in blood of impaired drivers:considerations for interpreting the results. Therapeutic Drug Monitoring. 29: 248–260 (2007).
6. J. M. Walsh. Guidelines for research on drugged driving. Addiction (Abingdon, England). 103: 1258–1268 (2008).
7. J. Pawliszyn. Sampling and Sample Preparation for Field and Laboratory: Fundamentals and New Directions in Sample Preparation. Amsterdan: Elsevier. 785-786 (2002).
8. J. Smeraglia, S.F. Baldrey, D. Watson. Matrix effects and selectivity issues in LC-MS-MS. Chromatographia. 55: 95–99 (2002).
9. B.E. Richter. Current trends and developments in sample preparation LC-GC. 17: 22–28 (1999).
10. L. Meng, W. Zhang, P. Meng, B. Zhu, K. Zheng. Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 1;989:46-53 (2015).
11. B.J. Moreira, J.M.C. Yokoya, C.M. De Gaitani. Microextração líquido-líquido dispersiva (DLLME): fundamentos, inovações e aplicações biológicas. Scientia Chromatographica. 6 (3):186-204 (2014).
12. N. Pizarro, J. Ortuño, M. Farré, C. Hernández-López, M. Pujadas, A. Llebaria. Determination of MDMA and its metabolites in blood and urine by gas chromatography-mass spectrometry and analysis of enantiomers by capillary electrophoresis. J Anal Toxicol. 26(3):157-165 (2002).
13. A. Ramseier, J. Caslavska, W. Thormann. Screening for urinary amphetamine and analogs by capillary electrophoretic immunoassays and confirmation by capillary electrophoresis with on-column multi wave length absorbance detection. Electrophoresis. 19: 2956 – 2966 (1998).
14. G. Skopp. Preanalytic aspects in postmortem toxicology. Forensic Sci Int.142: 75-100 (2004).
15. J.B. Henry, R.B. Lauzon, G.B. Schumann. Urina e outros fluidos corporais: Exame básico de urina. In: Henry JB. Diagnósticos clínicos e tratamento por métodos laboratoriais. 19. Ed. São Paulo: Manole. 411-456 (1999).
16. J. La Pointe, B. Musselman, T. O’Neill, J.R. Shepard. Detection of “bath salt” synthetic cathinones and metabolites in urine via DART-MS and solid phase microextraction. J Am Soc Mass Spectrom. 26:159-165 (2015).
17. S.K. Strasinger. Introduçao à uroanálise. In: Uroanálise & fluidos biológicos. 3. ed. São Paulo: Premier. 1-12 (1998).
18. UNODC. Recommended methods for the detection and assay of heroin, cannabinoids, cocaine, amphetamine, methamphetamine, and ring-substituted amphetamine derivatives in biological specimens. New York, 1995. Disponível em: .
19. UNODC. Recommended methods for the detection and assay of barbiturates and benzodiazepines in biological specimens. New York, 1997. Disponível em: .
20. UNODC. Guidelines for the forensic analysis of drugs facilitating sexual assault and other criminal acts. New York, 2011. Disponível em: .
21. M. Yonamine, O.A. Silva. Confirmation of cocaine exposure by gas chromatography-mass spectrometry of urine extracts after methylation of benzoylecgonine. J Chromatogr B Analyt Technol Biomed Life Sci. 773:83-87 (2002).
22. M. Yonamine, A.M. Saviano. Determination of cocaine and cocaethylene in urine by solid-phase microextraction and gas chromatography-mass spectrometry. Biomed Chromatogr. 20:1071-1075 (2006).
23. Tiaft J, November TF, Preparation S, About G, Our I, Events N. Recommendations on Sample Preparation of Biological Specimens for Systematic Toxicological Analysis. 2: 1–10 (2012).
24. A.L. Pelissier-Alicot, J. Gaulier, P. Champsaur, P Marquetet al. Mechanisms Underlying Postmortem Redistribution of Drugs : A Review. 27 (2003).
25. D.M. Butzbach. The influence of putrefaction and sample storage on post-mortem toxicology results. Forensic Sci Med Pathol. 6(1):35–45 (2010).
26. M. Yarema, C. Becker. Key Concepts in Postmortem Drug Redistribution. Clin Toxicol. 43(4):235–41 (2005). 27. D.S. Cook, R.A. Braithwaite, K.A. Hale. Estimating antemortem drug concentrations from postmortem blood samples : the influence of postmortem redistribution. 97:282–285 (2000).
28. M.D. Robertson, O.H. Drummer. Postmortem drug metabolism by bacteria. J Forensic Sci. 40:382–6 (1995).
29. D. Sutlovic, M. Nestic, Z. Kovacic, S. Gusic, T. Mlinarek, I. Salamunic. Microbial ethanol production in postmortem urine sample. Med Sci Law. 53:243–246 (2013).
30. F.S. Pelição, M.D. Peres, J.F. Pissinate, B.S. De Martinis. A one-step extraction procedure for the screening of cocaine, amphetamines and cannabinoids in postmortem blood samples. J Anal Toxicol. 38:341–348 (2014).
31. W. Schramm, R.H. Smith, P.A. Craig. Methods of simplified saliva collection for the measurement of drugs of abuse, therapeutic drugs, and other molecules. Saliva as a Diagnostic Fluid. 694: 311-313 (1993).
32. S. Chiappin, G. Antonelli, R. Gatti, E.F. De Palo. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clinica Chimica Acta. 383: 30-40 (2007).
33. O.H. Drummer. Review: Pharmacokinetics of illicit drugs in oral fluid. Forensic Science International 2005, 150: 133-142.
34. L.H.P. Bueno, R.H.A. Silva, M.C.S. Dias, B.S. De Martinis. Oral fluid as an alternative matrix to determine ethanol for forensic purposes. Journal of Forensic Sciences, 242: 117-122 (2014).
35. P. Kintz, V. Cirimele, B. Ludes. Detection of cannabis in oral fluid (saliva) and forehead wipes (sweat) from impaired drivers. Journal of Analytical Toxicology. 24: 557-561 (2000).
36. N. Samyn, G. De Boeck, A.G. Verstraete. The use of oral fluid and sweat wipes for the detection of drugs of abuse in drivers. Journal of Forensic Sciences. 47: 1380-1387 (2002).
37. A.G. Verstraete. Oral fluid testing for driving under the influence of drugs: history, recent progress and remaining challenges. Forensic Science International. 150: 143-150 (2005).
38. O.H. Drummer. Introduction and review of collection techniques and applications of drug testing of oral fluid. Therapeutic Drug Monitoring. 30: 203-206 (2008).
39. V. Vindenes, B. Yttredal, E.L. Oiestad, J.P. Waal H, Bernard, J.G. Morland, A.S. Christophersen. Oral Fluid is a Viable Alternative for Monitoring Drug Abuse: Detection of Drugs in Oral Fluid by Liquid Chromatography-Tandem Mass Spectrometry and Comparison to the Results from Urine Samples from Patients Treated with Methadone or Buprenorphine. Journal of Analytical Toxicology. 35: 32-39 (2011).
40. E.J. Cone. Testing human-hair for drugs of abuse.1. individual dose and time profiles of morphine and codeine in plasma, saliva, urine, and beard compared to drug-induced effects on pupils and behavior. Journal of Analytical Toxicology. 14: 1-7 (1990).
41. E.J. Cone. Saliva testing for drugs of abuse. Saliva as a Diagnostic Fluid. 694: 91-127 (1993).
42. K. Clauwaert, T. Decalestecker, K. Mortier, W. Lambert, D. Deforce, C. Van Peteghem, J. Van Bocxlaer. The determination of cocaine, benzoylecgonine, and cocaethylene in small-volume oral fluid samples by liquid chromatography-quadrupole-time-of-flight mass spectrometry. Journal of Analytical Toxicology. 28: 655-659 (2004).
43. R. Dams, R.E. Choo, W.E. Lambert, H. Jones, M.A. Huestis. Oral fluid as an alternative matrix to monitor opiate and cocaine use in substance-abuse treatment patients. Drug and Alcohol Dependence. 87: 258-267 (2007).
44. M. Concheiro M, A. de Castro, O. Quintela, M. Lopez-Rivadulla, A. Cruz. Determination of MDMA, MDA, MDEA and MBDB in oral fluid using high performance liquid chromatography with native fluorescence detection. Forensic Science International. 150: 221-226 (2005).
45. K.A. Mortier, K.E. Maudens, W.E. Lambert, K.M. Clauwaert, J.F. Van Bocxlaer, D.L. Deforce, C.H. Van Peteghem, et al. Simultaneous, quantitative determination of opiates, amphetamines, cocaine and benzoylecgonine in oral fluid by liquid chromatography quadrupole-time-of-flight mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences. 779: 321-330 (2002).
46. M. Pujadas, S. Pichini, E. Civit, E. Santamarina, K. Perez, R. de la Torre. A simple and reliable procedure for the determination of psychoactive drugs in oral fluid by gas chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 44: 594-601 (2007).
47. D. Fritch, K. Blum, S. Nonnemacher, B.J. Haggerty, M.P. Sullivan, E.J. Cone. Identification and Quantitation of Amphetamines, Cocaine, Opiates, and Phencyclidine in Oral Fluid by Liquid Chromatography-Tandem Mass Spectrometry. Journal of Analytical Toxicology. 33: 569-577 (2009).
48. M. Concheiro, T.R. Gray, D.M. Shakleya, M.A. Huestis. High-throughput simultaneous analysis of buprenorphine, methadone, cocaine, opiates, nicotine, and metabolites in oral fluid by liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry. 398: 915-924 (2010).
49. M. Concheiro, D.M. Shakleya, M.A. Huestis. Simultaneous analysis of buprenorphine, methadone, cocaine, opiates and nicotine metabolites in sweat by determination of psychoactive drugs in oral fluid by gas chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 44: 594-601 (2007).
50. M. Yonamine, N. Tawil, R.L.M. Moreau, O. Silva. A. Solid-phase micro-extraction-gas chromatography-mass spectrometry and Headspace-gas chromatography of tetrahydrocannabinol, amphetamine, methamphetamine, cocaine and ethanol in saliva samples. Journal of Chromatography B. 789:73-78 (2003).
51. E.A. Kolbrich, I. Kim, A.J. Barnes, E.T. Moolchan, L. Wilson, G.A. Cooper, C. Reid, et al. RapiScan oral fluid drug testing system: An evaluation of sensitivity, specificity, and efficiency for cocaine detection compared with ELISA and GC-MS following controlled cocaine administration. Journal of Analytical Toxicology. 27: 407-411 (2003).
52. P. Kintz, N. Samyn. Unconventional samples and alternative matrices. In: Bogunz MJ. Handbook of Analytical Separations. Elsevier Science.2 (2000).
53. P. Kintz, N. Samyn. Determination of “Ecstasy” components in alternative biological specimens. J. Chrom. B. 733: 137-143 (1999).
54. B.S. De Martinis. Sweat as an Alternative Matrix for Amphetamines and MethylenEdioxy Derivatives Analysis. Current Pharmaceutical Analysis. 4: 274-278. (2008).
55. J.R. Taylor, I.D. Watson, J.F. Tames, D. Lowe. Detection of drug use in a methadone maintenance clinic: Sweat patches versus urine testing. Addiction. 93: 847-853 (1998).
56. N. De Giovanni, N. Fucci. The current status of sweat testing for drugs of abuse: a review. Curr Med Chem. 20: (4) 545-561(2013).
57. V.P. Kutyshenko, M. Molchanov, P. Beskaravayny, V.N. Uversky, M.A. Timchenko. Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy. Plus one. 6: (12) 24-28 (2011).
58. M.A. Huestis, J.M. Oyler, E.J. Cone, A.T. Wstadik, D. Schoendorfer, R.E.J.R. Joseph. Sweat testing for cocaine, codeine and metabolites by gas chromatography- mass spectrometry. Journal of Chromatography B. 733: 247-264 (1999).
59. J.A. Levisky, D.L. Bowerman, W.W. Jenkins, S.B. Karch. Drug deposition in adipose tissue and skin: Evidence for an alternative source of positive, sweat patch tests. For Science International.110: 35-46 (2000).
60. D.A. Kidwell, J.C. Holland, S. Athanaselis. Testing for drugs of abuse in saliva and sweat. Journal of Chromat B. 713:111-135 (1998).
61. D.A. Kidwell, F.P. Smith. Susceptibility of Pharmchek TM drugs of abuse patch to environmental contamination. Forensic Sci Int. 116: 89–106 (2000).
62. S.L. Kacinko, A.J. Barnes, E.W. Schwilke, E.J. Cone, E.T. Moolchan, M.A. Huestis. Disposition of Cocaine and Its Metabolites in Human Sweat after Controlled Cocaine Administration. Clin Chem. 51: (11) 2085-2094 (2005).
63. D.M. Bush. The U.S. mandatory guidelines for federal workplace drug testing programs: current status and future considerations. 174: 111-119(2008).
64. N. Uemura, R.P. Nath, M.R. Harkey, G.L. Henderson, J. Mendelson, R.T. Jones. Cocaine levels in sweat collection patches vary by location of patch placement and decline over time. J Anal Toxicol. 28: 253–259 (2004).
65. M.A. Huestis, E.J. Cone. Testing in alternative matrices. In: KARCH, S.B. Drug abuse handbook. Boca Raton: CRC Press. (1998).
66. P. Kintz, V. Spiehler, A. Negrusz, G. Cooper. Alternative specimens. In: Negrusz A, Cooper G, editors. Clarke ́s Analytical Forensic Toxicology. 2 ed. London: Pharmaceutical Press. 153-187 (2013).
67. M. Balikovà. Hair analysis for drugs of abuse. Plausability of interpretation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 149(2): 199-207 (2005).
68. E.J. Cone. Mechanisms of drug incorporation into hair. Ther Drug Monit. 18(4):438-443 (1996).
69. G.A. Cooper, R. Kronstrand, P. Kintz. Testing SoH. Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Int. 218(1-3):20-24 (2012).
70. C.R. Borges, J.C. Roberts, D.G. Wilkins, D.E. Rollins. Relationship of melanin degradation products to actual melanin content: application to human hair. Anal Biochem. 290(1):116-25 (2001).
71. R.E. Joseph, T.P. Su, E.J. Cone. In vitro binding studies of drugs to hair: influence of melanin and lipids on cocaine binding to Caucasoid and Africoid hair. J Anal Toxicol. 20(6):338-44 (1996).
72. F. Pragst, M.A. Balikova. State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta. 370(1-2):17-49 (2006).
73. L. Pötsch, G. Skopp, M.R. Moeller. Biochemical approach on the conservation of drug molecules during hair fiber formation. Forensic Sci Int. 84(1-3):25-35 (1997).
74. M. Barroso, E. Gallardo, D.N Vieira, M. López-Rivadulla, J.A. Queiroz. Hair: a complementary source of bioanalytical information in forensic toxicology. Bioanalysis. 3(1):67-79 (2011).
75. R. Kronstrand, S. Förstberg-Peterson, B. Kågedal, J. Ahlner, G. Larson. Codeine concentration in hair after oral administration is dependent on melanin content. Clin Chem. 45(9):1485-94 (1999).
76. G.L. Henderson, M.R. Harkey, C. Zhou, R.T. Jones, P. Jacob. Incorporation of isotopically labeled cocaine into human hair: race as a factor. J Anal Toxicol. 22(2):156-65 (1998).
77. M. Wada, R. Ikeda, N. Kuroda, K. Nakashima. Analytical methods for abused drugs in hair and their applications. Anal Bioanal Chem. 397: 1039-67 (2010).
78. K.S. Scott, Y. Nakahara. A study into the rate of incorporation of eight benzodiazepines into rat hair. Forensic Sci Int. 133(1-2):47-56 (2003).
79. F. Musshoff, B. Madea. Analytical pitfalls in hair testing. Anal Bioanal Chem. 388(7):1475-94 (2007).
80. C. Moore, A. Negrusz, D. Lewis. Determination of drugs of abuse in meconium. J Chromatog B. 713:137–146 (1998).
81. J. Gareri, J. Klein, G. Koren. Drugs of abuse testing in meconium. Clinica Chimica Acta. 366: 101-111 (2006).
82. T.R. Gray, D.M. Shakleya, M.A. Huestis. A liquid chromatography tandem mass spectrometry method for the simultaneous quantification of 20 drugs of abuse and metabolites in human meconium. Analytical Bioanalytical Chemistry. 393: 1977–1990 (2009).
83. D. Bielawski, E. Ostrea, J.N. Posecion, M. Corrion, J. Seagraves. Detection of several classes of pesticides and metabolites in meconium by gas chromatography-mass spectrometry. Chromatographia. 62: 623-629 (2005).
84. B.S De Martinis, D.J. Dorta, R.B. Bazzarella, M.N.R. Alves, M.D. Peres. Amostras biológicas alternativas para análises toxicológicas. In: Fundamentos de Química Forense. Campinas, SP: Millennium Editora, Cap.16: 306-316 (2012).
85. E.T. Yamaguchi, M.M.S.C. Cardoso, M.L.A. Torres, A.G. Andrade. Drogas de abuso e gravidez. Revista de Psiquiatria Clínica. 35(1): 44 – 47 (2008).
86. T. Gray, M.A. Huestis. Bioanalytical procedures for monitoring in utero drug exposure. Analytical Bioanalytical Chemistry. 388: 1455–1465 (2007).
87. T.R. Gray, D.M. Shakleya, M.A. Huestis. Quantification of nicotine, cotinine, trans-3’-hydroxycotinine, nornicotine and norcotinine in human meconium by liquid chromatography/tandem mass spectrometry. J Chromatography B. 863: 107–114 (2008).
88. A.R. Allan, I.S.D. Roberts. Post-mortem toxicology of commonly-abused drugs. Diagnostic Histopathol. Elsevier. 15(1):33–41(2009).
89. J. Wyman, S. Bultman. Postmortem distribution of heroin metabolites in femoral blood, liver, cerebrospinal fluid, and vitreous humor. J Anal Toxicol. 28(4):260–263 (2004).
90. W. Jones, P. Holmgren. Uncertainty in estimating blood ethanol concentrations by analysis of vitreous humour. J Clin Pathol.54(9):699–702 (2001).
91. A.J. Jenkins. Drug Testing in Alternate Biological Specimens. 200 p. (2008).
92. M.D. Peres, F.S. Pelição, B. Caleffi, B.S. De Martinis. Simultaneous quantification of cocaine, amphetamines, opiates and cannabinoids in vitreous humor. J Anal Toxicol. 38(1):39–45 (2014).
93. B. Steven. Karch. Postmortem Toxicology of Abused Drugs. 216 p. (2007).
94. B.E. Richter. Current trends and developments in sample preparation. LC-GC. 17(6): 22–28 (1999).
95. X. Fu, Y. Liao, H. Liu. Sample preparation for pharmaceutical analysis. Analytical and Bioanalytical Chemistry. 381(1): 1618–2642 (2005).
96. D.M. Pavlovic, S. Babica, A.J.M. Horvata, M.K. Macana. Sample preparation in analysis of pharmaceuticals. TrAC Trends in Analytical Chemistry. 26(11): 1062–1075 (2007).
97. S. Englard, S. Seifter. Precipitation techniques. Methods in Enzymology 182: 285–300 (1990).
98. H. Wu, J. Zhang, K. Norem, T.A El-Shourbagy. Simultaneous determination of a hydrophobic drug candidate and its metabolite in human plasma with salting-out assisted liquid/liquid extraction using a mass spectrometry friendly salt. Journal of Pharmaceutical and Biomedical Analysis. 48(4): 1243–1248 (2008).
99. F. Myasein, E. Kim, J. Zhang, H. Wu, T.A. El-Shourbagy. Rapid, simultaneous determination of lopinavir and ritonavir in human plasma by stacking protein precipitations and salting-out assisted liquid/liquid extraction, and ultrafast LC-MS/MS. Analytica Chimica Acta. 651(1): 112–116 (2009).
100. G.M. Nikolic, J.M. Perovic, R.S. Nikolic, M.M. Cakic. Salting out extraction of catechol and hydroquinone from aqueous solutions and urine samples. Physics, Chemistry and Technology. 2(5): 293–299 (2003).
101. L.A. Berrueta, B. Gallo, F. Vicente. A review of solid phase extraction: basic principles and new developments. Chromatographia. 40(7–8): 474–483 (1995).
102. T.R. Krishnan, I. Ibraham. Solid-phase extraction technique for the analysis of biological samples. Journal of Pharmaceutical and Biomedical Analysis. 12(3): 287–294 (1994).
103. D.C.M. Bordin, M.N.R. Alves, O.G. Cabrices, E.G. De Campos, B.S. Martinis. A Rapid Assay for the Simultaneous Determination of Nicotine, Cocaine and Metabolites in Meconium Using Disposable Pipette Extraction and Gas Chromatography–Mass Spectrometry (GC–MS) Anal. Toxicol. 38: 31–38 (2014).
104. H. Guan, W.E. Brewer, S.L. Morgan. New approach to multiresidue pesticide determination in foods with high fat content using disposable pipette extraction (DPX) and gas chromatography–mass spectrometry (GC-MS). Journal of Agricultural and Food Chemistry. 57(22): 10531–10538 (2009).
105. H. Guan, W.E. Brewer, S.T. Garris, C Craft, S.L. Morgan. Multiresidue analysis of pesticides in fruits and vegetables using disposable pipette extraction (DPX) and micro-luke method. Journal of Agricultural and Food Chemistry. 58(10): 5973–5981(2010).
106. R. Borusiewicz. Fire Debris Analysis – A Survey of Techniques Used for Accelerants Isolation and Concentration. Zagadnieñ Nauk S ą dowych Issues of Forensic Sciences. 50: 44–63 (2002).
107. J. He, R. Lv, H. Zhan, H. Wang, J. Cheng, K. Lu, F. Wang. Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample. Analytica Chimica Acta. 674(1): 53–58 (2010).
108. S.S. Caldas. Principais técnicas de preparo de amostra para a determinação de resíduos de agrotóxicos em água por cromatografia líquida com detecção por arranjo de diodos e por espectrometria de massas. Quim. Nova. 34: 1604-1617(2011).
109. H.S. Dorea, A. Gaujac, S. Navickiene. Microextração em fase sólida: aspectos termodinâmicos e cinéticos. Scientia Plena, 4: 7 (2008).
110. P.L. Kole. Recent advances in sample preparation techniques for effective bioanalytical methods. Biomedical Chromatography. 25: 199 – 217 (2011).
111. S.C.N. Queiroz, C. Collins, C.S.F. Jardim. Métodos de extração e/ou concentração de compostos encontrados em fluidos biológicos para posterior determinação cromatográfica. Quim. Nova. 24(1): 68 – 76 (2001).
112. G. Vas, K. Vékey. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom., 39:. 233–254 (2004).
113. M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijan. Determination Of Organic Compounds In Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 1116: 1-9 (2006).
114. S. Berijani, Y. Assadi, M. Anbia, M.R. Milani hosseini, E. Aghaee. Dispersive Liquid–Liquid Microextraction Combined With Gas Chromatography-flame Photometric Detection: Very Simple, Rapid And Sensitive Method For The Determination Of Organophosphorus Pesticides In Water. J Chromatogr A. 1123: 1-9 (2006).
115. X.H. Zang, Q.H. Wu, M.Y. Zhang, G.H. Xi, Z. Wang. Developments Of Dispersive Liquid-Liquid Microextraction Technique. Chinese Journal of Analytical Chemistry. 37:161-168 (2009).
116. J.G. Guillot, M. Lefebvre, J.P. Weber. Determination of heroin, 6-acetylmorphine, and morphine in biological fluids using their propionyl derivatives with ion trap GC-MS. Journal of Analytical Toxicology. 21(2): 127-133 (1997).
117. L. Kovatsi, K. Rentifis, D. Giannakis, S. Njau, V.J. Samanidou. Disposable pipette extraction for gas chromatographic determination of codeine, morphine, and 6-monoacetylmorphine in vitreous humor. Sci. 34: 1716–1721 (2011).
118. M.D. Peres, B.S. De Martinis Cocaine, metabolites and derivates in vitreous humor using disposable pipette extraction (DPX) tips and GC-MS. In: Alternative Matrices. Approaches in: Joint Meeting of the Society of Forensic Toxicologists (SOFT) & The International Association of Forensic Toxicologists (TIAFT) Meeting, San Francisco, California, Septemper 25-30 (2011).
119. J. Ammann, J.M. McLaren, D. Gerostamoulos, J. Beyer. Detection and quantification of new designer drugs in human blood: Part 1 – Synthetic cannabinoids. J Anal Toxicol. 36:372–80 (2012).
120. M. Fisichella, S. Odoardi, S. Strano-Rossi. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and app. Microchem J 2015;123:33–41.
121. J-Y. Lee, S. Kim, J-T. Lee, J-H. Choi, J. Lee, H. Pyo. Rapid Determination of Volatile Organic Compounds in Human Whole Blood Using Static Headspace Sampling with Gas Chromatography and Mass Spectrometry. Bull Korean Chem Soc. 33:3963–3970 (2012).
122. J.L. Schroeder, L.J. Marinetti, R.K. Smith, W.E. Brewer, B.L. Clelland, S.L.J. Morgan. The analysis of delta9-tetrahydrocannabinol and metabolite in whole blood and 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid in urine using disposable pipette extraction with confirmation and quantification by gas chromatography-mass spectrometry. Anal. Toxicol. 32: 659 – 666 (2008).
123. M.N.R. Alves, G. Zanchetti, A. Piccinotti, S. Tameni, B.S. De Martinis, A. Polettini. Determination of cocaine and metabolites in hair by column-switching LC-MS-MS analysis. Anal Bioanal Chem. 405:6299–306 (2013).
124. G. Merola, S. Gentili, F. Tagliaro, T. MacChia. Determination of different recreational drugs in hair by HS-SPME and GC/MS. Anal Bioanal Chem. 397:2987–95 (2010).
125. T. Nadulski, F. Pragst. Simple and sensitive determination of Delta(9)-tetrahydrocannabinol, cannabidiol and cannabinol in hair by combined silylation, headspace solid phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 846:78–85 (2007).
126. K. Aleksa, P. Walasek, N. Fulga, B. Kapur, J. Gareri, G. Koren. Simultaneous detection of seventeen drugs of abuse and metabolites in hair using solid phase micro extraction (SPME) with GC/MS. Forensic Sci Int. 218:31–6 (2012).
127. L. Morini, C. Vignali, M. Polla, A. Sponta, A. Groppi. Comparison of extraction procedures for benzodiazepines determination in hair by LC-MS/MS. Forensic Sci Int. 218:53–6 (2012).
128. Øiestad EL, Johansen U, Christophersen AS. Drug screening of preserved oral fluid by liquid chromatography-tandem mass spectrometry. Clin Chem 2007;53:300–9.
129. L. Anzillotti, E. Castrignanò, S. Strano Rossi, M. Chiarotti. Cannabinoids determination in oral fluid by SPME-GC/MS and UHPLC-MS/MS and its application on suspected drivers. Sci Justice, 54:421–426 (2014).
130. M. Concheiro, A. de Castro, O. Quintela, A. Cruz, M. López-Rivadulla. Confirmation by LC-MS of drugs in oral fluid obtained from roadside testing. Forensic Sci Int. 170:156–162 (2012).
131. S. Kneisel, V. Auwärter, J. Kempf. Analysis of 30 synthetic cannabinoids in oral fluid using liquid chromatography-electrospray ionization tandem mass spectrometry. Drug Test Anal. 5:657–669 (2013).
132. A. De Castro, E. Lendoiro, H. Fernández-Vega, S. Steinmeyer, M. López-Rivadulla, A. Cruz. Liquid chromatography tandem mass spectrometry determination of selected synthetic cathinones and two piperazines in oral fluid. Cross reactivity study with an on-site immunoassay device. J Chromatogr A. 1374:93–101 (2014).
133. X. Zhang, M. Chen, G. Cao, G. Hu. Determination of morphine and codeine in human urine by gas chromatography-mass spectrometry. J Anal Methods Chem (2013).
134. A.D. De Jager, J.V. Warner, M. Henman, W. Ferguson, A. Hall. LC-MS/MS method for the quantitation of metabolites of eight commonly-used synthetic cannabinoids in human urine-an Australian perspective. J Chromatogr B Analyt Technol Biomed Life Sci. 897:22–31 (2012).
135. S. Paterson, R. Cordero, S. McCulloch, P. Houldsworth. Analysis of urine for drugs of abuse using mixed-mode solid-phase extraction and gas chromatography-mass spectrometry. Ann Clin Biochem. 37:690–700 (2000).
136. N. Raikos, G. Theodoridis, E. Alexiadou, H. Gika, H. Argiriadou, H. Parlapani. Analysis of anaesthetics and analgesics in human urine by headspace SPME and GC. J Sep Sci. 32:1018–26 (2009).
137. S.T. Ellison, W.E. Brewer, S.L.J. Morgan. Comprehensive analysis of drugs of abuse in urine using disposable pipette extraction. Anal. Toxicol. 33(7): 356-365 (2009).
138. B.S. De Martinis, C.C.S. Martin Automated headspace solid-phase microextraction and capillary gas chromatography analysis of ethanol in postmortem specimens. Forensic Science International 128: 115–119 (2002).
139. M.J.D. Follador, M. Yonamine, R.L.M. Moreau, O.A. Silva. Detection of cocaine and cocaethylene in sweat by solid-phase microextraction and gas chromatography/mass spectrometry. Journal of Chromatography B. 811: 37–40 (2004).
140. B.S. De Martinis, A.J. Barnes, K.B. Scheidweiler, MA.A Huestis. Development and validation of a disk solid phase extraction and gas chromatography–mass spectrometry method for MDMA, MDA, HMMA, HMA, MDEA, methamphetamine and amphetamine in sweat. Journal of Chromatography B. 852: 450–458(2007).
141. M. N. R. Alves, B. S. De Martinis, G. Duarte, M. M. M. Pinhata. Validation of a Solid Phase Extraction procedure for identification and quantification of Cocaine and metabolities in Meconium. Curr Pharm Anal 8: 317-23 (2012).
142. M. Roehsig, D. M. L. De Paula, S. Moura, E. M. A. Diniz, M. Yonamine. Determination of eight fatty acid ethyl esters in meconium samples by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Sep Sci. 33(14): 2115-22 (2010).