Miniaturized sample preparation techniques and their application to the determination of residues and contaminants in food samplesares

Luiz, Anderson Luigi; Maciel, Edvaldo Vasconcelos Soares; Lanças, Fernando M.

Palavras-chave: Miniaturized extraction techniques, sample preparation, food analysis, residue and contaminants in food samples, food safety.

Resumo: One of the most important steps during the analysis of residue and contaminants (such as pesticides and veterinary drugs) is generically termed sample preparation. This step is critical because it involves the extraction of the target analytes from the original matrix and their transference to a more adequate chemical environment – usually a solvent – in order to facilitate their further determination. In addition, it may also involves aditional steps such as clean-up, aiming eliminating interfering compounds, concentration of the target analyts and back-extraction in more adequate solvents for further analysis. While the classical sample preparation techniques use to involve several steps, modern miniaturized techniques may perform several tasks such as extraction, clean-up and analyts concentration in just one step. In addition, these techniques are easy to be automated and requires minute amounts of sample and solvents, a major advantage from both environmental and analyst health point of view. In the present work the fundamentals of these techniques will be reviewed as well as their recent applications in the determinantion of residue and contaminants in food samples.

Referências Bibliográficas

1. Pawliszyn CLA and J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 1990;62:2145–8. doi:10.1021/ac00218a019.
2. Tan GH, Abdulra’uf LB. Recent Developments and Applications of Microextraction Techniques for the Analysis of Pesticide Residues in Fruits and Vegetables. In: Soundararajan RP, editor. Pestic. – Recent Trends Pestic. Residue Assay, InTech; 2012. doi:10.5772/48745.
3. Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J. Protocol for solid-phase microextraction method development. Nat Protoc 2010;5:122–39. doi:10.1038/nprot.2009.179.
4. Pires Valente AL, Augusto F. Microextração por fase sólida. Quim Nova 2000;23:523–30. doi:10.1590/S0100-40422000000400016.
5. Abdulra’uf LB, Hammed WA, Tan GH. SPME Fibers for the Analysis of Pesticide Residues in Fruits and Vegetables: A Review. Crit Rev Anal Chem 2012;42:152–61. doi:10.1080/10408347.2011.632315.
6. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J. Recent developments in solid-phase microextraction. Anal Bioanal Chem 2009;393:781–95. doi:10.1007/s00216-008-2375-3.
7. Kataoka H. Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 2010;396:339–64. doi:10.1007/s00216-009-3076-2.
8. Lord H, Pawliszyn J. Evolution of solid-phase microextraction technology. J Chromatogr A 2000;885:153–93. doi:10.1016/S0021-9673(00)00535-5.
9. Wardencki W, Michulec M, Cury ł o J. A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int J Food Sci Technol 2004;39:703–17. doi:10.1111/j.1365-2621.2004.00839.x.
10. Kataoka H, Lord HL, Pawliszyn J. Applications of solid-phase microextraction in food analysis. J Chromatogr A 2000;880:35-62. doi:10.1016/S0021-9673(00)00309-5.
11. Cai L, Gong S, Chen M, Wu C. Vinyl crown ether as a novel radical crosslinked sol-gel SPME fiber for determination of organophosphorus pesticides in food samples. Anal Chim Acta 2006;559:89–96. doi:10.1016/j.aca.2005.11.048.
12. Chong SL, Wang D, Hayes JD, Wilhite BW, Malik a. Sol-gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability. Anal Chem 1997;69:3889–98. doi:10.1021/ac9703360.
13. Kumar A, Gaurav, Malik AK, Tewary DK, Singh B. A review on development of solid phase microextraction fibers by sol-gel methods and their applications. Anal Chim Acta 2008;610:1–14. doi:10.1016/j.aca.2008.01.028.
14. Es-Haghi A, Baghernejad M, Bagheri H. Novel unbreakable solid-phase microextraction fibers on stainless steel wire and application for the determination of oxadiargyl in environmental and agricultural samples in combination with gas chromatography-mass spectrometry. Talanta 2014;128:231–6. doi:10.1016/j.talanta.2014.04.088.
15. Feng J, Qiu H, Liu X, Jiang S, Feng J. The development of solid-phase microextraction fibers with metal wires as supporting substrates. TrAC – Trends Anal Chem 2013;46:44–58. doi:10.1016/j.trac.2013.01.015.
16. Turiel E, Tadeo JL, Martin-Esteban a. Molecularly imprinted polymeric fibers for solid-phase microextraction. Anal Chem 2007;79:3099–104. doi:10.1021/ac062387f.
17. Song X, Xu S, Chen L, Wei Y, Xiong H. Recent advances in molecularly imprinted polymers in food analysis. J Appl Polym Sci 2014;131:1–18. doi:10.1002/app.40766.
18. Ho TD, Canestraro AJ, Anderson JL. Ionic liquids in solid-phase microextraction: A review. Anal Chim Acta 2011;695:18‐43. doi:10.1016/j.aca.2011.03.034.
19. Wanigasekara E, Perera S, Crank J a., Sidisky L, Shirey R, Berthod A, et al. Bonded ionic liquid polymeric material for solid- phase microextraction GC analysis. Anal Bioanal Chem 2010;396:511–24. doi:10.1007/s00216-009-3254-2.
20. Mee Kin C, Guan Huat T. Headspace solid-phase microextraction for the evaluation of pesticide residue contents in cucumber and strawberry after washing treatment. Food Chem 2010;123:760–4. doi:10.1016/j.foodchem.2010.05.038.
21. Song J, Forney CF, Jordan M a. A method to detect diphenylamine contamination of apple fruit and storages using headspace solid phase micro-extraction and gas chromatography/mass spectroscopy. Food Chem 2014;160:255–9. doi:10.1016/j.foodchem.2014.03.099.
22. Navalón A, Prieto A, Araujo L, Vílchez JL. Determination of pyrimethanil and kresoxim-methyl in green groceries by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A 2002;975:355–60. doi:10.1016/S0021-9673(02)01220-7.
23. Sijia W, Enting W, Yuan Y. Detection of furan levels in select Chinese foods by solid phase microextraction–gas chromatography/mass spectrometry method and dietary exposure estimation of furan in the Chinese population. Food Chem Toxicol 2014;64:34–40. doi:10.1016/j.fct.2013.11.012.
24. Kataoka H, Terada Y, Inoue R, Mitani K. Determination of isophorone in food samples by solid-phase microextraction coupled with gas chromatography-mass spectrometry. J Chromatogr A 2007;1155:100–4. doi:10.1016/j.chroma.2007.04.005.
25. Silva É a S, Lopez-Avila V, Pawliszyn J. Fast and robust direct immersion solid phase microextraction coupled with gas chromatography-time-of-flight mass spectrometry method employing a matrix compatible fiber for determination of triazole fungicides in fruits. J Chromatogr A 2013;1313:139–46. doi:10.1016/j.chroma.2013.07.071.
26. Viñas P, Campillo N, Martínez-Castillo N, Hernández-Córdoba M. Method development and validation for strobilurin fungicides in baby foods by solid-phase microextraction gas chromatography-mass spectrometry. J Chromatogr A 2009;1216:140–6. doi:10.1016/j.chroma.2008.11.036.
27. Beltran J, Peruga a., Pitarch E, López FJ, Hernández F. Application of solid-phase microextraction for the determination of pyrethroid residues in vegetable samples by GC-MS. Anal Bioanal Chem 2003;376:502–11. doi:10.1007/s00216-003-1916-z.
28. Chai MK, Tan GH. Validation of a headspace solid-phase microextraction procedure with gas chromatography-electron capture detection of pesticide residues in fruits and vegetables. Food Chem 2009;117:561–7. doi:10.1016/j.foodchem.2009.04.034.
29. Liu M, Peng Q, Chen Y, Tang Q, Feng Q. A rapid space-resolved solid-phase microextraction method as a powerful tool to determine contaminants in wine based on their volatility. Food Chem 2015;176:12–6. doi:10.1016/j.foodchem.2014.12.037.
30. Campillo N, Viñas P, Peñalver R, Cacho JI, Hernández-Córdoba M. Solid-phase microextraction followed by gas chromatography for the speciation of organotin compounds in honey and wine samples: A comparison of atomic emission and mass spectrometry detectors. J Food Compos Anal 2012;25:66–73. doi:10.1016/j.jfca.2011.08.001.
31. Burger BV, Munro Z. Headspace gas analysis : Quantitative trapping and thermal desorption of volatiles using fused-silica open tubular capillary traps. J Chromatogr A 1986;370:449–64. doi:10.1016/S0021-9673(00)94715-0.
32. Kataoka H, Saito K. Recent advances in SPME techniques in biomedical analysis. J Pharm Biomed Anal 2011;54:926–50. doi:10.1016/j.jpba.2010.12.010.
33. Kataoka H, Ishizaki A, Nonaka Y, Saito K. Developments and applications of capillary microextraction techniques: A review. Anal Chim Acta 2009;655:8–29. doi:10.1016/j.aca.2009.09.032.
34. Queiroz MEC, Melo LP. Recentes avanços da in-tube SPME-LC para bioanálises. Sci Chromatogr 2013;5:167–79. doi:10.4322/sc.2014.002.
35. Imaizumi M, Saito Y, Hayashida M, Takeichi T, Wada H, Jinno K. Polymer-coated fibrous extraction medium for sample preparation coupled to microcolumn liquid-phase separations. J Pharm Biomed Anal 2003;30:1801–8. doi:10.1016/S0731-7085(02)00522-8.
36. Saito Y, Kawazoe M, Hayashida M, Jinno K. Direct coupling of microcolumn liquid chromatography with in-tube solid-phase microextraction for the analysis of antidepressant drugs. Analyst 2000;125:807–9. doi:10.1039/b000544o.
37. Jinno K, Kawazoe M, Saito Y, Takeichi T, Hayashida M. Sample preparation with fiber-in-tube solid-phase microextraction for capillary electrophoretic separation of tricyclic antidepressant drugs in human urine. Electrophoresis 2001;22:3785–90. doi:10.1002/1522-2683(200109)22:17<3785::AID-ELPS3785>3.0.CO;2-U.
38. Zheng MM, Ruan GD, Feng YQ. Evaluating polymer monolith in-tube solid-phase microextraction coupled to liquid chromatography/quadrupole time-of-flight mass spectrometry for reliable quantification and confirmation of quinolone antibacterials in edible animal food. J Chromatogr A 2009;1216:7510–9. doi:10.1016/j.chroma.2009.03.054.
39. Wen Y, Wang Y, Feng YQ. Simultaneous residue monitoring of four tetracycline antibiotics in fish muscle by in-tube solid-phase microextraction coupled with high-performance liquid chromatography. Talanta 2006;70:153–9. doi:10.1016/j. talanta.2005.11.049.
40. Wen Y, Zhang M, Zhao Q, Feng YQ. Monitoring of five sulfonamide antibacterial residues in milk by in-tube solid-phase microextraction coupled to high-performance liquid chromatography. J Agric Food Chem 2005;53:8468–73. doi:10.1021/jf051319b.
41. Huang JF, Lin B, Yu QW, Feng YQ. Determination of fluoroquinolones in eggs using in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal Bioanal Chem 2006;384:1228–35. doi:10.1007/s00216-005-0270-8.
42. Hu Y, Song C, Li G. Fiber-in-tube solid-phase microextraction with molecularly imprinted coating for sensitive analysis of antibiotic drugs by high performance liquid chromatography. J Chromatogr A 2012;1263:21–7. doi:10.1016/j.chroma.2012.09.029.
43. Nonaka Y, Saito K, Hanioka N, Narimatsu S, Kataoka H. Determination of aflatoxins in food samples by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Chromatogr A 2009;1216:4416–22. doi:10.1016/j.chroma.2009.03.035.
44. Saito K, Ikeuchi R, Kataoka H. Determination of ochratoxins in nuts and grain samples by in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Chromatogr A 2012;1220:1–6. doi:10.1016/j.chroma.2011.11.008.
45. Baltussen E, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J Microcolumn Sep 1999;11:737–47. doi:10.1002/(sici)1520-667x(1999)11:10<737::aid- mcs7>;2-4.
46. Abdulra’uf LB, Tan GH. Review of SBSE Technique for the Analysis of Pesticide Residues in Fruits and Vegetables. Chromatographia 2013;77:15–24. doi:10.1007/s10337-013-2566-8.
47. Ridgway K, Lalljie SPD, Smith RM. Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 2007;1153:36–53. doi:10.1016/j.chroma.2007.01.134.
48. Baltussen E, Cramers C a., Sandra PJF. Sorptive sample preparation – A review. Anal Bioanal Chem 2002;373:3–22. doi:10.1007/s00216-002-1266-2.
49. Prieto a., Basauri O, Rodil R, Usobiaga a., Fernández L a., Etxebarria N, et al. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 2010;1217:2642–66. doi:10.1016/j.chroma.2009.12.051.
50. Kawaguchi M, Ito R, Saito K, Nakazawa H. Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J Pharm Biomed Anal 2006;40:500–8. doi:10.1016/j.jpba.2005.08.029.
51. Sánchez-Rojas F, Bosch-Ojeda C, Cano-Pavón JM. A Review of Stir Bar Sorptive Extraction. Chromatographia 2009;69:79–94. doi:10.1365/s10337-008-0687-2.
52. Chen Y, Guo Z, Wang X, Qiu C. Sample preparation. J Chromatogr A 2008;1184:191–219. doi:10.1016/j.chroma.2007.10.026.
53. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B, David F, et al. Dual-phase twisters: A new approach to headspace sorptive extraction and stir bar sorptive extraction. J Chromatogr A 2005;1094:9–16. doi:10.1016/j.chroma.2005.07.099.
54. Bicchi C, Cordero C, Liberto E, Sgorbini B, David F, Sandra P, et al. Influence of polydimethylsiloxane outer coating and packingj material on analyte recovery in dual-phase headspace sorptive extraction. J Chromatogr A 2007;1164:33–9. doi:10.1016/j.chroma.2007.07.026.
55. Hu Y, Li J, Hu Y, Li G. Development of selective and chemically stable coating for stir bar sorptive extraction by molecularly imprinted technique. Talanta 2010;82:464–70. doi:10.1016/j.talanta.2010.04.057.
56. Zhu X, Cai J, Yang J, Su Q, Gao Y. Films coated with molecular imprinted polymers for the selective stir bar sorption extraction of monocrotophos. J Chromatogr A 2006;1131:37–44. doi:10.1016/j.chroma.2006.07.041.
57. Turiel E, Martín-Esteban A. Molecularly imprinted polymers for sample preparation: A review. Anal Chim Acta 2010;668:87–99. doi:10.1016/j.aca.2010.04.019.
58. Martín-Esteban a. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC – Trends Anal Chem 2013;45:169–70. doi:10.1016/j.trac.2012.09.023.
59. Fontanals N, Marcé RM, Borrull F. New materials in sorptive extraction techniques for polar compounds. J Chromatogr A 2007;1152:14–31. doi:10.1016/j.chroma.2006.11.077.
60. Lambert JP, Mullett WM, Kwong E, Lubda D. Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids. J Chromatogr A 2005;1075:43–9. doi:10.1016/j.chroma.2005.03.119.
61. Hu C, He M, Chen B, Hu B. A sol-gel polydimethylsiloxane/polythiophene coated stir bar sorptive extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. J Chromatogr A 2013;1275:25–31. doi:10.1016/j.chroma.2012.12.036.
62. Liu W, Hu Y, Zhao J, Xu Y, Guan Y. Determination of organophosphorus pesticides in cucumber and potato by stir bar sorptive extraction. J Chromatogr A 2005;1095:1–7. doi:10.1016/j.chroma.2005.07.107.
63. Wan Ibrahim WA, Wan Ismail WN, Abdul Keyon AS, Sanagi MM. Preparation and characterization of a new sol-gel hybrid based tetraethoxysilane-polydimethylsiloxane as a stir bar extraction sorbent materials. J Sol-Gel Sci Technol 2011;58:602–11. doi:10.1007/s10971-011-2434-7.
64. Liu W, Wang H, Guan Y. Preparation of stir bars for sorptive extraction using sol-gel technology. J Chromatogr A 2004;1045:15–22. doi:10.1016/j.chroma.2004.06.036.
65. Hyötyläinen T, Riekkola ML. Sorbent- and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: A review. Anal Chim Acta 2008;614:27–37. doi:10.1016/j.aca.2008.03.003.
66. Kende a., Csizmazia Z, Rikker T, Angyal V, Torkos K. Combination of stir bar sorptive extraction-retention time locked gas chromatography-mass spectrometry and automated mass spectral deconvolution for pesticide identification in fruits and vegetables. Microchem J 2006;84:63–9. doi:10.1016/j.microc.2006.04.015.
67. Barriada-Pereira M, Serôdio P, González-Castro MJ, Nogueira JMF. Determination of organochlorine pesticides in vegetable matrices by stir bar sorptive extraction with liquid desorption and large volume injection-gas chromatography-mass spectrometry towards compliance with European Union directives. J Chromatogr A 2010;1217:119–26. doi:10.1016/j.chroma.2009.10.076.
68. Campillo N, Viñas P, Aguinaga N, Férez G, Hernández-Córdoba M. Stir bar sorptive extraction coupled to liquid chromatography for the analysis of strobilurin fungicides in fruit samples. J Chromatogr A 2010;1217:4529–34. doi:10.1016/j.chroma.2010.05.006.
69. Viñas P, Aguinaga N, Campillo N, Hernández-Córdoba M. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. J Chromatogr A 2008;1194:178–83. doi:10.1016/j.chroma.2008.04.039.
70. Pfannkoch EA, Stuff JR, Whitecavage JA, Blevins JM, Seely KA, Moran JH. A High Throughput Method for Measuring Polycyclic Aromatic Hydrocarbons in Seafood Using QuEChERS Extraction and SBSE. Int J Anal Chem 2015;2015:1–8. doi:10.1155/2015/359629.
71. Huang X, Chen L, Chen M, Yuan D, Nong S. Sensitive monitoring of penicillin antibiotics in milk and honey treated by stir bar sorptive extraction based on monolith and LC-electrospray MS detection. J Sep Sci 2013;36:907–15. doi:10.1002/jssc.201200987.
72. Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M. Stir bar sorptive extraction coupled to gas chromatography-mass spectrometry for the determination of bisphenols in canned beverages and filling liquids of canned vegetables. J Chromatogr A 2012;1247:146–53. doi:10.1016/j.chroma.2012.05.064.
73. Hu C, He M, Chen B, Hu B. Determination of estrogens in pork and chicken samples by stir bar sorptive extraction combined with high-performance liquid chromatography-ultraviolet detection. J Agric Food Chem 2012;60:10494–500. doi:10.1021/jf303269c.
74. Huang X, Lin J, Yuan D. Simple and sensitive determination of nitroimidazole residues in honey using stir bar sorptive extraction with mixed mode monolith followed by liquid chromatography. J Sep Sci 2011:n/a – n/a. doi:10.1002/jssc.201000880.
75. Huang X, Chen L, Yuan D. Development of monolith-based stir bar sorptive extraction and liquid chromatography tandem mass spectrometry method for sensitive determination of ten sulfonamides in pork and chicken samples. Anal Bioanal Chem 2013;405:6885–9. doi:10.1007/s00216-013-7124-6.
76. Maggi L, Carmona M, del Campo CP, Zalacain A, de Mendoza JH, Mocholí F a., et al. Multi-residue contaminants and pollutants analysis in saffron spice by stir bar sorptive extraction and gas chromatography-ion trap tandem mass spectrometry. J Chromatogr A 2008;1209:55–60. doi:10.1016/j.chroma.2008.09.026.
77. Zuin VG, Montero L, Bauer C, Popp P. Stir bar sorptive extraction and high-performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in Mate teas. J Chromatogr A 2005;1091:2–10. doi:10.1016/j.chroma.2005.07.057.
78. Neng NR, Silva ARM, Nogueira JMF. Adsorptive micro-extraction techniques — Novel analytical tools for trace levels of polar solutes in aqueous media. J Chromatogr A n.d.;1217:7303–10. doi:10.1016/j.chroma.2010.09.048.
79. Nogueira JMF. Microextração adsortiva em barra (BAμE): Um conceito analítico inovador para microextração estática. Sci Chromatogr 2013;5:275–83. doi:10.4322/sc.2014.010.
80. Almeida C, Nogueira JMF. Determination of trace levels of parabens in real matrices by bar adsorptive microextraction using selective sorbent phases. J Chromatogr A 2014;1348:17–26. doi:10.1016/j.chroma.2014.04.057.
81. Neng N, Nogueira J. Determination of Phenol Compounds In Surface Water Matrices by Bar Adsorptive Microextraction-High Performance Liquid Chromatography-Diode Array Detection. Molecules 2014;19:9369–79. doi:10.3390/molecules19079369.
82. Almeida C, Strzelczyk R, Nogueira JMF. Improvements on bar adsorptive microextraction (BAμE) technique-Application for the determination of insecticide repellents in environmental water matrices. Talanta 2014;120:126–34. doi:10.1016/j.talanta.2013.11.031.
83. Da Rosa Neng N, Sequeiros RCP, Florêncio Nogueira JM. Combining bar adsorptive microextraction with capillary electrophoresis-Application for the determination of phenolic acids in food matrices. Electrophoresis 2014;35:2488–94. doi:10.1002/elps.201400101.
84. Abdel-Rehim M. New trend in sample preparation: On-line microextraction in packed syringe for liquid and gas chromatography applications I. Determination of local anaesthetics in human plasma samples using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 2004;801:317–21. doi:10.1016/j.jchromb.2003.11.042.
85. Moein MM, Abdel-Rehim A, Abdel-Rehim M. Microextraction by packed sorbent (MEPS). TrAC Trends Anal Chem 2015;67:34–44. doi:10.1016/j.trac.2014.12.003.
86. Abdel-Rehim M. Microextraction by packed sorbent (MEPS): A tutorial. Anal Chim Acta 2011;701:119–28. doi:10.1016/j.aca.2011.05.037.
87. Altun Z, Abdel-Rehim M. Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2008;630:116–23. doi:10.1016/j.aca.2008.09.067.
88. Abdel-Rehim M. Recent advances in microextraction by packed sorbent for bioanalysis. J Chromatogr A 2010;1217:2569–80. doi:10.1016/j.chroma.2009.09.053.
89. Bagheri H, Ayazi Z, Aghakhani A, Alipour N. Polypyrrole/polyamide electrospun-based sorbent for microextraction in packed syringe of organophosphorous pesticides from aquatic samples. J Sep Sci 2012;35:114–20. doi:10.1002/jssc.201100509.
90. Bagheri H, Ayazi Z, Es’haghi A, Aghakhani A. Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides. J Chromatogr A 2012;1222:13–21. doi:10.1016/j.chroma.2011.11.063.
91. Salami FH, Queiroz MEC. Microextraction in Packed Sorbent for Determination of Sulfonamides in Egg Samples by Liquid Chromatography and Spectrophotometric Detection. J Braz Chem Soc 2011;22:1656–61.
92. Du W, Zhao G, Fu Q, Sun M, Zhou H, Chang C. Combined microextraction by packed sorbent and high-performance liquid chromatography-ultraviolet detection for rapid analysis of ractopamine in porcine muscle and urine samples. Food Chem 2014;145:789–95. doi:10.1016/j.foodchem.2013.08.094.
93. Du W, Lei C, Zhang S, Bai G, Zhou H, Sun M, et al. Determination of clenbuterol from pork samples using surface molecularly imprinted polymers as the selective sorbents for microextraction in packed syringe. J Pharm Biomed Anal 2014;91:160–8. doi:10.1016/j.jpba.2013.12.022.
94. Leça JM, Pereira V, Pereira AC, Marques JC. Rapid and sensitive methodology for determination of ethyl carbamate in fortified wines using microextraction by packed sorbent and gas chromatography with mass spectrometric detection. Anal Chim Acta 2014;811:29–35. doi:10.1016/j.aca.2013.12.018.
95. Salami FH, Queiroz MEC. Microextraction in packed sorbent for the determination of pesticides in honey samples by gas chromatography coupled to mass spectrometry. J Chromatogr Sci 2013;51:899–904. doi:10.1093/chromsci/bms187.
96. Gonçalves J, Silva CL, Castilho PC, Câmara JS. An attractive, sensitive and high-throughput strategy based on microextraction by packed sorbent followed by UHPLC-PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines. Microchem J 2013;106:129–38. doi:10.1016/j.microc.2012.05.037.
97. Perestrelo R, Silva CL, Câmara JS. Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography. J Chromatogr A 2015;1381:54–63. doi:10.1016/j.chroma.2015.01.020.
98. Andraš č íková M, Matisová E, Hrouzková S. Liquid Phase Microextraction Techniques as a Sample Preparation Step for Analysis of Pesticide Residues in Food. Sep Purif Rev 2014;44:1–18. doi:10.1080/15422119.2013.872125.
99. Xu L, Basheer C, Lee HK. Developments in single-drop microextraction. J Chromatogr A 2007;1152:184–92. doi:10.1016/j.chroma.2006.10.073.
100. Sarafraz-Yazdi A, Amiri A. Liquid-phase microextraction. TrAC – Trends Anal Chem 2010;29:1–14. doi:10.1016/j.trac.2009.10.003.
101. Liu H, Dasgupta PK. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem 1996;68:1817–21. doi:10.1021/ac960145h.
102. Amvrazi EG, Tsiropoulos NG. Application of single-drop microextraction coupled with gas chromatography for the determination of multiclass pesticides in vegetables with nitrogen phosphorus and electron capture detection. J Chromatogr A 2009;1216:2789–97. doi:10.1016/j.chroma.2008.07.070.
103. Amvrazi EG, Tsiropoulos NG. Chemometric study and optimization of extraction parameters in single-drop microextraction for the determination of multiclass pesticide residues in grapes and apples by gas chromatography mass spectrometry. J Chromatogr A 2009;1216:7630–8. doi:10.1016/j.chroma.2009.08.092.
104. Zhang M, Huang J, Wei C, Yu B, Yang X, Chen X. Mixed liquids for single-drop microextraction of organochlorine pesticides in vegetables. Talanta 2008;74:599–604. doi:10.1016/j.talanta.2007.06.041.
105. Liu D, Min S. Rapid analysis of organochlorine and pyrethroid pesticides in tea samples by directly suspended droplet microextraction using a gas chromatography-electron capture detector. J Chromatogr A 2012;1235:166–73. doi:10.1016/j.chroma.2012.02.070.
106. Garbi A, Sakkas V, Fiamegos YC, Stalikas CD, Albanis T. Sensitive determination of pesticides residues in wine samples with the aid of single-drop microextraction and response surface methodology. Talanta 2010;82:1286–91. doi:10.1016/j.talanta.2010.06.046.
107. Zhao E, Han L, Jiang S, Wang Q, Zhou Z. Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice. J Chromatogr A 2006;1114:269–73. doi:10.1016/j.chroma.2006.03.011.
108. Farajzadeh MA, Djozan D, Khorram P. Development of a new microextraction method based on a dynamic single drop in a narrow-bore tube: Application in extraction and preconcentration of some organic pollutants in well water and grape juice samples. Talanta 2011;85:1135–42. doi:10.1016/j.talanta.2011.05.044.
109. Viñas P, Martínez-Castillo N, Campillo N, Hernández-Córdoba M. Liquid-liquid microextraction methods based on ultrasound- assisted emulsification and single-drop coupled to gas chromatography-mass spectrometry for determining strobilurin and oxazole fungicides in juices and fruits. J Chromatogr A 2010;1217:6569–77. doi:10.1016/j.chroma.2010.08.046.
110. Xiao Q, Hu B, Yu C, Xia L, Jiang Z. Optimization of a single-drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography-flame photometric detection. Talanta 2006;69:848– 55. doi:10.1016/j.talanta.2005.11.024.
111. Kin CM, Huat TG. Comparison of HS-SDME with SPME and SPE for the determination of eight organochlorine and organophosphorus pesticide residues in food matrices. J Chromatogr Sci 2009;47:694–9. doi:10.1093/chromsci/47.8.694.
112. Liu Y, Zhao E, Zhou Z. Single-Drop Microextraction and Gas Chromatographic Determination of Fungicide in Water and Wine Samples. Anal Lett 2006;39:2333–44. doi:10.1080/00032710600755843.
113. Amvrazi EG, Papadi-Psyllou AT, Tsiropoulos NG. Pesticide enrichment factors and matrix effects on the determination of multiclass pesticides in tomato samples by single-drop microextraction (SDME) coupled with gas chromatography and comparison study between SDME and acetone-partition extraction proced. Int J Environ Anal Chem 2010;90:245–59. doi:10.1080/03067310903166699.
114. Qian LL, He YZ. Funnelform single-drop microextraction for gas chromatography-electron-capture detection. J Chromatogr A 2006;1134:32–7. doi:10.1016/j.chroma.2006.08.094.
115. Shrivas K, Wu HF. Ultrasonication followed by single-drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish. J Sep Sci 2008;31:380–6. doi:10.1002/jssc.200700380.
116. Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem 1999;71:2650–6. doi:10.1021/ac990055n.
117. De Oliveira a. RM, Magalhães IRDS, De Santana FJM, Bonato PS. Microextração em fase líquida (LPME): Fundamentos da técnica e aplicações na análise de fármacos em fluidos biológicos. Quim Nova 2008;31:637–44. doi:10.1590/S0100-40422008000300031.
118. Asensio-Ramos M, Ravelo-Pérez LM, González-Curbelo MÁ, Hernández-Borges J. Liquid phase microextraction applications in food analysis. J Chromatogr A 2011;1218:7415–37. doi:10.1016/j.chroma.2011.05.096.
119. Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction. TrAC – Trends Anal Chem 2003;22:565–74. doi:10.1016/S0165-9936(03)01007-0.
120. Grønhaug Halvorsen T, Pedersen-Bjergaard S, Rasmussen KE. Reduction of extraction times in liquid-phase microextraction. J Chromatogr B Biomed Sci Appl 2001;760:219–26. doi:10.1016/S0378-4347(01)00272-9.
121. Bedendo GC, Carasek E. Simultaneous liquid-liquid microextraction and polypropylene microporous membrane solid-phase extraction of organochlorine pesticides in water, tomato and strawberry samples. J Chromatogr A 2010;1217:7–13. doi:10.1016/j.chroma.2009.11.017.
122. Bedendo GC, Jardim ICSF, Carasek E. Multiresidue determination of pesticides in industrial and fresh orange juice by hollow fiber microporous membrane liquid-liquid extraction and detection by liquid chromatography-electrospray-tandem mass spectrometry. Talanta 2012;88:573–80. doi:10.1016/j.talanta.2011.11.037.
123. Wang J, Du Z, Yu W, Qu S. Detection of seven pesticides in cucumbers using hollow fibre-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 2012;1247:10–7. doi:10.1016/j.chroma.2012.05.040.
125. Xiong J, Hu B. Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. J Chromatogr A 2008;1193:7–18. doi:10.1016/j.chroma.2008.03.072.
126. Huang S-P, Huang S-D. Dynamic hollow fiber protected liquid phase microextraction and quantification using gas chromatography combined with electron capture detection of organochlorine pesticides in green tea leaves and ready-to-drink tea. J Chromatogr A 2006;1135:6–11. doi:10.1016/j.chroma.2006.09.027.
127. Barahona F, Gjelstad A, Pedersen-Bjergaard S, Rasmussen KE. Hollow fiber-liquid-phase microextraction of fungicides from orange juices. J Chromatogr A 2010;1217:1989–94. doi:10.1016/j.chroma.2010.01.077.
128. Li J, Zhang HF, Shi YP. Monitoring multi-class pesticide residues in fresh grape by hollow fibre sorptive extraction combined with gas chromatography-mass spectrometry. Food Chem 2011;127:784–90. doi:10.1016/j.foodchem.2010.12.148.
129. Marsin M, Farhana N, Ghani Y a, Miskam M, Aini W, Ibrahim W, et al. Analysis of organophosphorus pesticides in vegetable samples by hollow fiber liquid phase microextraction coupled with gas chromatography-electron capture detection. J Liq Chromatogr Relat Technol 2010;33:693–703. doi:10.1080/10826071003608850.
130. Hu Y, Wang Y, Hu Y, Li G. Liquid-liquid-solid microextraction based on membrane-protected molecularly imprinted polymer fiber for trace analysis of triazines in complex aqueous samples. J Chromatogr A 2009;1216:8304–11. doi:10.1016/j.chroma.2009.09.063.
131. Sun X, Zhu F, Xi J, Lu T, Liu H, Tong Y, et al. Hollow fiber liquid-phase microextraction as clean-up step for the determination of organophosphorus pesticides residues in fish tissue by gas chromatography coupled with mass spectrometry. Mar Pollut Bull 2011;63:102–7. doi:10.1016/j.marpolbul.2011.03.038.
132. Chia K-J, Huang S-D. Analysis of organochlorine pesticides in wine by solvent bar microextraction coupled with gas chromatography with tandem mass spectrometry detection. Rapid Commun Mass Spectrom 2006;20:118–24. doi:10.1002/rcm.2282.
133. Bolaños PP, Romero-González R, Frenich a. G, Vidal JLM. Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 2008;1208:16–24. doi:10.1016/j.chroma.2008.08.059.
134. Romero-González R, Pastor-Montoro E, Martínez-Vidal JL, Garrido-Frenich A. Application of hollow fiber supported liquid membrane extraction to the simultaneous determination of pesticide residues in vegetables by liquid chromatography/massspectrometry. Rapid Commun Mass Spectrom 2006;20:2701–8. doi:10.1002/rcm.2653.
135. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 2006;1116:1–9. doi:10.1016/j.chroma.2006.03.007.
136. Martins ML, Primel EG, Caldas SS, Prestes OD, Adaime MB, Zanella R. Microextração Líquido-Líquido Dispersiva (DLLME): Fundamentos e aplicações. Sci Chromatogr 2012;4:29–45. doi:10.4322/sc.2012.004.
137. Viñas P, Campillo N, López-García I, Hernández-Córdoba M. Dispersive liquid-liquid microextraction in food analysis. A critical review. Anal Bioanal Chem 2013:1–33. doi:10.1007/s00216-013-7344-9.
138. Pena-Pereira F, Lavilla I, Bendicho C. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochim Acta – Part B At Spectrosc 2009;64:1–15. doi:10.1016/j.sab.2008.10.042.
139. Rezaee M, Yamini Y, Faraji M. Evolution of dispersive liquid-liquid microextraction method. J Chromatogr A 2010;1217:2342–57. doi:10.1016/j.chroma.2009.11.088.
140. Daneshfar a., Khezeli T, Lotfi HJ. Determination of cholesterol in food samples using dispersive liquid-liquid microextraction followed by HPLC-UV. J Chromatogr B Anal Technol Biomed Life Sci 2009;877:456–60. doi:10.1016/j.jchromb.2008.12.050.
141. Viñas P, Bravo-Bravo M, López-García I, Hernández-Córdoba M. Dispersive liquid-liquid microextraction for the determination of vitamins D and K in foods by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection. Talanta 2013;115:806–13. doi:10.1016/j.talanta.2013.06.050.
142. Cheng J, Xia Y, Zhou Y, Guo F, Chen G. Application of an ultrasound-assisted surfactant-enhanced emulsification microextraction method for the analysis of diethofencarb and pyrimethanil fungicides in water and fruit juice samples. Anal Chim Acta 2011;701:86–91. doi:10.1016/j.aca.2011.04.058.
143. Boonchiangma S, Ngeontae W, Srijaranai S. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Talanta 2012;88:209–15. doi:10.1016/j.talanta.2011.10.033.
144. Campone L, Piccinelli a. L, Celano R, Rastrelli L. Application of dispersive liquid-liquid microextraction for the determination of aflatoxins B1, B2, G1 and G2 in cereal products. J Chromatogr A 2011;1218:7648–54. doi:10.1016/j.chroma.2011.05.028.
145. Alshana U, Gö ǧ er NG, Erta ş N. Dispersive liquid-liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of non-steroidal anti-inflammatory drugs in milk and dairy products. Food Chem 2013;138:890–7. doi:10.1016/j.foodchem.2012.11.121.
146. Jovanov P, Guzsvány V, Franko M, Lazi ć S, Saka č M, Šari ć B, et al. Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 2013;111:125–33. doi:10.1016/j.talanta.2013.02.059.
147. Zhao X, Fu L, Hu J, Li J, Wang H, Huang C, et al. Analysis of PAHs in Water and Fruit Juice Samples by DLLME Combined with LC-Fluorescence Detection. Chromatographia 2009;69:1385–9. doi:10.1365/s10337-009-1099-7.
148. Campone L, Piccinelli AL, Celano R, Rastrelli L. PH-controlled dispersive liquid-liquid microextraction for the analysis of ionisable compounds in complex matrices: Case study of ochratoxin A in cereals. Anal Chim Acta 2012;754:61–6. doi:10.1016/j.aca.2012.10.010.
149. Wang P, Yang X, Wang J, Cui J, Dong a. J, Zhao HT, et al. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by high performance liquid chromatography. Food Chem 2012;134:1691–8. doi:10.1016/j.foodchem.2012.03.103.
150. Biparva P, Ehsani M, Hadjmohammadi MR. Dispersive liquid-liquid microextraction using extraction solvents lighter than water combined with high performance liquid chromatography for determination of synthetic antioxidants in fruit juice samples. J Food Compos Anal 2012;27:87–94. doi:10.1016/j.jfca.2012.04.002.
151. Zhang S, Li C, Song S, Feng T, Wang C, Wang Z. Application of dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples. Anal Methods 2010;2:54. doi:10.1039/b9ay00115h.
152. Antep HM, Merdivan M. Development of new dispersive liquid–liquid microextraction technique for the identification of zearalenone in beer. Anal Methods 2012:4129–34. doi:10.1039/c2ay25665g.
153. Víctor-Ortega MD, Lara FJ, García-Campaña AM, Del Olmo-Iruela M. Evaluation of dispersive liquid-liquid microextraction for the determination of patulin in apple juices using micellar electrokinetic capillary chromatography. Food Control 2013;31:353–8. doi:10.1016/j.foodcont.2012.11.003.
154. Fan C, Li N, Cao X. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid–liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chem 2015;174:446–51. doi:10.1016/j.foodchem.2014.11.050.
155. Jovanov P, Guzsvány V, Lazi ć S, Franko M, Saka č M, Šari ć L, et al. Development of HPLC-DAD method for determination of neonicotinoids in honey. J Food Compos Anal 2015;40:106–13. doi:10.1016/j.jfca.2014.12.021.
156. Melo A, Mansilha C, Pinho O, Ferreira IMPL V. Analysis of Pesticides in Tomato Combining QuEChERS and Dispersive Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography. Food Anal Methods 2013;6:559–68. doi:10.1007/s12161-012-9469-4.
157. Chen L, Yin L, Song F, Liu Z, Zheng Z, Xing J, et al. Determination of pesticide residues in ginseng by dispersive liquid-liquid microextraction and ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 2013;917-918:71–7. doi:10.1016/j.jchromb.2012.12.034.
158. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M. Liquid chromatography with diode array detection and tandem mass spectrometry for the determination of neonicotinoid insecticides in honey samples using dispersive liquid-liquid microextraction. J Agric Food Chem 2013;61:4799–805. doi:10.1021/jf400669b.
159. Karami-Osboo R, Maham M, Miri R, AliAbadi MHS, Mirabolfathy M, Javidnia K. Evaluation of Dispersive Liquid-Liquid Microextraction-HPLC-UV for Determination of Deoxynivalenol (DON) in Wheat Flour. Food Anal Methods 2013;6:176–80. doi:10.1007/s12161-012-9428-0.
160. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M. Dispersive liquid – Liquid microextraction for the determination of three cytokinin compounds in fruits and vegetables by liquid chromatography with time-of-flight mass spectrometry. Talanta 2013;116:376–81. doi:10.1016/j.talanta.2013.05.063.
161. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M. Dispersive liquid-liquid microextraction for the determination of macrocyclic lactones in milk by liquid chromatography with diode array detection and atmospheric pressure chemical ionization ion-trap tandem mass spectrometry. J Chromatogr A 2013;1282:20–6. doi:10.1016/j.chroma.2013.01.086.
162. Kamankesh M, Mohammadi A, Modarres Tehrani Z, Ferdowsi R, Hosseini H. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design. Talanta 2013;109:46–51. doi:10.1016/j.talanta.2013.01.052.
163. Dashtbozorgi Z, Ramezani MK, Waqif-Husain S. Optimization and validation of a new pesticide residue method for cucumber and tomato using acetonitrile-based extraction-dispersive liquid–liquid microextraction followed by liquid chromatography-tandem mass spectrometry. Anal Methods 2013;5:1192. doi:10.1039/c2ay26287h.
164. Zhang L, Chen F, Liu S, Chen B, Pan C. Ionic liquid-based vortex-assisted dispersive liquid-liquid microextraction of organophosphorus pesticides in apple and pear. J Sep Sci 2012;35:2514–9. doi:10.1002/jssc.201101060.
165. Wang S, Liu C, Yang S, Liu F. Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction Following High-Performance Liquid Chromatography for the Determination of Fungicides in Fruit Juices. Food Anal Methods 2012:481–7. doi:10.1007/s12161-012-9402-x.
166. D’Orazio G, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MÁ, Fanali S. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt. Electrophoresis 2015;36:615–25. doi:10.1002/elps.201400452.