Folate – Analytical properties, bioavailability and stability in foods

Paiva, Emmanuela Prado de; Costa, Marcella Melo Assis; Azevedo Filho, Clayton Anderson de

Palavras-chave: folate, methods, extraction, food, vegetables, HPLC, bioavailability and stability.

Resumo: Folate is a term used to designate chemical forms of vitamin B 9 , which can be found in animal, vegetable and microbial cells at different oxidation levels from polyglutamates to monoglutamates. Its absence in diet can lead to disturbances, especially during pregnancy, which guided mandatory food enrichment. The improvement of analytical methods started in the 90’s, in order to ensure the safety of information present in food composition table and nutritional guidelines. The analysis of the different chemical forms of folate in food presents some challenges due to its low concentration, possibility of isomerization and oxidation in extraction and quantification steps, and presence of interferents, especially in complex matrices. This raises the need for discussion on the safety of analytical methodologies available for detection, identification and quantification of folates in foods. This review has endeavored to point out the most relevant characteristics and chemical properties to the stability and bioavailability of folate in foods. In addition, spectroscopic information of trade patterns of six chemical forms in combination with the latest data were compiled from the literature aiming at guiding the development of simplified analytical methods with a lower loss of folates found in foods.

Referências Bibliográficas

1. Ball, G.F.M. (2006). Vitamins in foods: analysis, bioavailability, and stability. (1st ed). United States of America, USA, Taylor & Francis Group: CRC press.
2. Donald B. McCormick (2001). Bioorganic Mechanisms Important to Coenzyme Functions. in Rucker R.B.; Suttie, J.W.; Mccormik, D. B.; Machlin, L.J. Handbook of vitamins. (3rd ed) (pp.427-462). New York, NY, USA: Basel.
3. Brody, T., Shane,B. (2001). Folic Acid, in Rucker R.B.; Suttie, J.W.; Mccormik, D. B.; Machlin, L.J. Handbook of vitamins. (3rd ed) (pp.427-462). New York, NY, USA: Basel.
4. Phillips, K.M., Ruggio, M.D., Haytowitz, D.B. (2011). Folate composition of 10 types of mushrooms determined by liquid chromatography–mass spectrometry Food Chemistry, 129, 630–636.
5. Hanson, A.D., Gregory J. F. (2002). Synthesis and turnover of folates in plants. Physiology and metabolism, 5, 244–249.
6. Eitenmiller RR, Lander Jr. WO (2008). Vitamin analysis for the health and food sciences. 2nd ed., 443–505. Taylor & Francis Group, Florida, USA.
7. Arcot, J., Shrestha, A. (2005) Folate: methods of analysis. Trends in Food Science & Technology, 16, 253–266.
8. Chang, H., Zhang, T., Zhang, Z., Bao, R., Fu, C., Wang, Z., Bao,Y., Li, Y., Wu, L., Zheng, X., Wu. J. (2011). Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects. Journal of Nutritional Biochemistry, 22, 1172-1177.
9. Miller, A., Mujamdar, V., Palmer, L., Bower, J.D., Tyagi, S.C. (2002). Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. American Journal of Hypertension, 15, 2, 157-163.
10. Zappacosta, B., Persichilli, S., Iacoviello, L., Di Castelnuovo, A., Graziano, M., Gervasoni, J., Leoncini E., Cimino, G., Mastroiacovo, P. (2011). Folate, vitamin B12 and homocysteine status in an Italian blood donor population. Nutrition, Metabolism & Cardiovascular Diseases, in press.
11. Fenech, M. (2011). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutation Research, in press.
12. Tamura, T. (1998). Determination of food folate. Nutritional Biochemistry, 9, 285-293.
13. Eichholzer, M., Zimmermann, O.T.R. (2006). Folic acid: a public-health challenge. Lancet, 367, 1352–1361.Eitenmiller, R.R., Lander Jr., W.O. (2008). Vitamin analysis for the health and food sciences. (2nd ed) (pp.443-505). United States of America, USA, Taylor & Francis Group.
14. Mahan, L. K., Escott-stump, S. (2003). Krause, Alimentos Nutrição e Dietoterapia. (10th ed) (pp 578-590.). São Paulo, SP: Roca.
15. Paixão, J. A., Stamford, T. L. M. (2004). Vitaminas lipossolúveis em alimentos-Uma abordagem analítica. Quimica Nova, 27, 1, 96-105.
16. Vahteristo, L.T., Ollilainen, V., Koivistoinen, P.E., Varo, P. (1996). Improvements in the Analysis of Reduced Folate Monoglutamates and Folic Acid in Food by High-Performance Liquid Chromatography. J. Agric. Food Chemistry, 44, 477-482.
17. Paixão,J.A. (2010). UV-Visible Detection Including Multiple Wavelengths. In Encyclopedia of Chromatography, (3rd ed) (pp.2392-2405) United States of America, USA, Taylor & Francis Group.
18. AOAC (2002) Association Official Analytical Chemists Official Methods of Analysis. (17th ed). Maryland: Association Official Analytical Chemists.
19. Ndaw S., Bergaentzlé, M., Aoudé-werner, D., Lahély, S., Hasselmann, C. (2001). Determination of folates in foods by high-performance liquid chromatography with fluorescence detection after precolumn conversion to 5-methyltetrahydrofolates. Journal of Chromatography A, 928, 77–90.
20. Martin, H., Comeskey, D., Simpson, R.M., Laing, W.A., Mcghie, T.K. (2010). Quantification of folate in fruits and vegetables: A fluorescence-based homogeneous assay. Analytical Biochemistry, 402, 137–145.
21. Finglas, P. M., Wigertz, K., Vahteristo, L., Witthoft, C., Southon, S., Froidmont-Gortz, I. (1999). Standardization of HPLC techniques for the determination of naturally-occurring folates in food. Food Chemistry, 64, 245-255.
22. Patring, J. D. M., Johansson, M. S., Yazynina, E., Jastrebova, J. A. (2005). Evaluation of impact of different antioxidants on stability of dietary folates during food sample preparation and storage of extracts prior to analysis. Analytica Chimica Acta, 553, 36–42.
23. Breithaupt, D. E. (2001). Determination of folic acid by ion-pair RP-HPLC in vitamin-fortified fruit juices after solid-phase extraction. Food Chemistry, 74, 521–525.
24. IUPAC-IUB (1987). Nomeclature and symbols for folic and related compounds. 59,6, 833-836.
25. Gliszczynska-swiglo, A. (2007). Folates as antioxidants. Food Chemistry, 101, 1480–1483.
26. Azevedo, E.P.P, Azevedo Filho, C.A., Santos, B.S., Silva, L.T., Fai, A.E., Paixão, J.A. (2015) Proposition for Mechanism of Separation of Folates by HPLC-DAD: Practical Application in New Zealand Spinach (Tetragonia expansa). Food Anal. Methods, 22, 1-12.
27. THE UNITED STATES PHARMACOPEIA. 34.ed. Rockville: United States Pharmacopeial Convention, 2011.
28. TACO – Tabela brasileira de composição de alimentos (2006) Ver II, (2nd ed) (pp.113), NEPA-UNICAMP Campinas, SP.
29. Jastrebova, J., Witthoft, C., Grahn, A., Svensson, U., Jagerstad, M. (2003). HPLC determination of folates in raw and processed beetroots. Food Chemistry, 80, 579–588.
30. Yazynina, E., Johansson, M., Jägerstad, M., Jastrebova, J. (2008). Low folate content in gluten-free cereal products and their main ingredients. Food Chemistry, 111, 236–242.
31. Sanderson, P., Mcnulty, H., Mastroiacovo, P., Mcdowell, I.F.W., Melse-boonstra, A., Finglas, P.F., Gregory, J.F. (2003). Folates Bioavailability: UK Food Standards Agency Workshop report. British Journal of Nutrition, 90, 473 -479.
32. Allen, L.H. Causes of vitamin B12 and folate deficiency.(2008) In Food and nutrition bulletin. International Nutrition foundation, 29, 2, S20-S31.
33. Stea, T. H., Johansson, M., Jagerstad, M., Frølich, W. (2006). Retention of folates in cooked, stored and reheated peas, broccoli and potatoes for use in modern large-scale service systems. Food Chemistry, 101, 1095–110.
34. Johansson, M., Furuhagen, C., Frolich, W., Jagerstad, M. (2008). Folate content in frozen vegetarian ready meals and folate retention after different reheating methods. LWT – Food Science and Technology, 41, 3, 528-536.
35. Melse-boonstra, A., Verhoef, P., Konings, E.J.M., Dusseldorp, M.V., Matser, A., Hollman, P.C.H., Meyboom, S., Kok, F.J., West, C.E. (2002). Influence of Processing on Total, Monoglutamate and Polyglutamate Folate Contents of Leeks, Cauliflower, and Green Beans. Journal Agricultural and Food Chemistry, 50, 3473-3478.
36. Verlinde, P., Oey, I., Hendrickx, M., Loey, A.V. (2008). High-pressure treatments induce folate polyglutamate profile changes in intact broccoli (Brassica oleraceae Italica). Food Chemistry, 111, 1220-229.
37. Fennema, O. R. (2000). Química de los alimentos. (2nd ed) (pp.348–490). Zaragoza, Acribila.
38. Gutzeit, D., Mönch, S., Jerz, G., Winterhalter, P., Rychlik, M. (2008). Folate content in sea buckthorn berries and related products (Hippophaë rhamnoides L. ssp. rhamnoides): LC-MS/MS determination of folate vitamer stability influenced by processing and storage assessed by stable isotope dilution assay. Anal Bioanal Chem, 391, 211–219.
39. Pfeiffer, C. M., Rogers, L. M., Gregory III, J. F. (1997). Determination of Folate in Cereal-Grain Food Products Using Trienzyme Extraction and Combined Affinity and Reversed-Phase Liquid Chromatography. J. Agric. Food Chem, 45, 407-413.
40. Soongsongkiat, M., Puwastien, P., Jittinandana, S., Dee-uam, A., Sungpuag, P. (2010). Testing of folate conjugase from chicken pancreas vs. commercial enzyme and studying the effect of cooking on folate retention in Thai foods. Journal of Food Composition and Analysis, 23, 681–688.
41. Quirós, A. R.B., Ron, C. C., López-hernández, J., Lage-yusty, M.A. (2004). Determination of folates in seaweeds by high- performance liquid chromatography. Journal of Chromatography A, 1032, 135–139.
42. Vishnumohan, S., Arcot, J., Pickford, P. (2011). Naturally-occurring folates in foods: Method development and analysis using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Food Chemistry, 125, 736–742.
43. Martin, J.I., Landen, W.O., JR. Soliman., Eitenmiller, R.R. (1990). Application of a tri-enzyme extraction for total folate determination in foods. Journal. Association Official Analytical Chemistry, 73, 805-808.
44. Johnston, K. E., Lofgren, P. A., Tamura, T. (2002). Folate concentrations of fast foods measured by trienzyme extraction method. Food Research International, 35, 565–569.
45. Hefni, W., Vohrvik, V., Tabekha, M., Witthoft, C. (2010) Folate content in foods commonly consumed in Egypt. Food Chemistry, 121, 540–545.
46. Konings, E.J.M. (1999). A validate liquid chromatographic method for determining folates in vegetables, milk powder, liver and flour. Journal of AOAC International, 82, 1, 119- 127.
47. Vahteristo, L., Finglas, P. M., Witthoft C., Wigertq, K., Seale R., Froidmont-gohtz I. (1996). Third EU MAT intercomparison study on food folate analysis using HPLC procedures. Food Chemistry, 57, 1, 109-111.
48. Dang, J., Arcot, J., Shrestha, A. (2000). Folate retention in selected processed legumes. Food chemistry, 68, 295-298.
49. Doherty, R.F., Beecher, G.R. (2003). A Method for the Analysis of Natural and Synthetic Folate in Foods. Journal Agricutural and Food Chemistry, 51, 354-361.
50. Ginting,E., Arcot, J. (2004). High-Performance Liquid Chromatographic Determination of Naturally Occurring Folates during Tempe Preparation. Journal Agricultural Food Chemistry, 52, 26, 7752–7758.
51. Paiva EP, Azevedo Filho CA, Ferreira SG, Stamford TLM, Paixao JA (2012) Investigation of protocols to extraction and quantification of folates in vegetables matrices split into liquor and fiber fraction using factorial design. Journal of Chromatography A 1260:33-41.
52. Lim, H. S., Mackey, A. D., Tamura, T., Wong, S. C., Picciano, M. F. (1998). Measurable human milk folate is increased by treatment with a-amylase and protease in addition to folate conjugase. Food Chemistry, 63, 3, 401-407.
53. Osseyi, E. S., Wehling, R. L., Albrecht, J. A. (1998). Liquid chromatographic method for determining added folic acid in fortified cereal products. Journal of Chromatography A, 826, 235–240.
54. Papadoyannins, I.N., Samanidou, V.F. (2009). Sample preparation for HPLC. Encyclopedia of Chromatography, (3rd ed) (pp.2090-2105). United States of America, USA, Taylor & Francis Group, 1, 1.
55. Nilsson, C., Johansson, M., Yazynina, E., Stralsjo, L., Jastrebova, J. (2004). Solid-phase extraction for HPLC analysis of dietary folates. Eur Food Res Technol, 219, 199–204.
56. Rizzolo, A., Polesello, S. (1992). Review-Chromatographic determination of vitamins in food. Journal of Chromatography, 624, 103-152.
57. Ruggeri, S., Vahteristo L. T., Aguzzi, A., Finglas P., Carnovale E. (1999). Determination of folate vitamers in food and in Italian reference diet by high-performance liquid chromatography. Journal of Chromatography A, 855, 237–245.
58. Catharino, R. R., Godoy, H. T., Lima-pallone, J. A. (2006). Metodologia analítica para determinação de folatos e ácido fólico em alimentos. Química Nova: 29, 5, 972-976.
59. Prieto, S. P., Grande, B. C., Falcón, S. G., Gándara, J. S. (2006). Screening for folic acid content in vitamin-fortified beverages. Food Control, 17, 900–904.
60. Snyder, L.R., Kirkland, J.J., Glajch, J. L. (1997). Pratical HPLC method development. In John Wiley & Sons, (2nd ed) (pp.700). New York, NY.
61. Papadoyannins, I.N., Tsioni, G. K., Samanidou, V.F. (1997). Simuntaneous determination of nine water and fat soluble vitamins after SPE separation and RP-HPLC analysis in pharmaceutical preparations and biological fluids. J.Liq. Chrom. & Rel. Technol, 20, 19, 3203-3231.
62. Jandera, P. (2009). Isocratic HPLC: System selection. Encyclopedia of Chromatography, 3 ed. United States of America: Taylor & Francis Group, 1,1, 1291-1301.
63. Patring, J. D. M. & Jastrebova, J. A. (2007). Application of liquid chromatography–electrospray ionisation mass spectrometry for determination of dietary folates: Effects of buffer nature and mobile phase composition on sensitivity and selectivity. Journal of Chromatography A, 1143, 72–82.
64. Jastrebova J; Strandler, H.S.; Patring, J.; Wiklund, T. Comparison of UPLC and HPLC for Analysis of Dietary Folates. Chromatographia, 2011, 73, 219–225.
65. Skoog, D.A.; Leaty, J.J. (1992). Principles of Instrumental Analysis. (4th ed) (pp.490-512). Saunders College Publishing, NY.
66. Beismanna S., Buchbergera W., Hertsensb, R., Klampfla, C.W. (2011). High-performance liquid chromatography coupled to direct analysis in real time mass spectrometry: Investigations on gradient elution and influence of complex matrices on signal intensities Journal of Chromatography A, 1218, 5180-5186.
67. Alexander, J.P., Ryan, J.T., Ballou, D.P., Coward, J.K. (2008) γ-Glutamyl Hydrolase: Kinetic Characterization of Isopeptide Hydrolysis Using Fluorogenic Substrates. Biochemistry, 47, 4, 1228–1239.
68. Papadoyannins, I.N., Samanidou, V.F. (2009). HPLC instrumentation: Validation. In Encyclopedia of Chromatography, (3rd ed) (pp.1118-1132). United States of America, USA, Taylor & Francis Group, 1, 1.
69. ICH (1994) Validation of analytical procedures: text and methodology Q2 (R1). 4ver., 1-13.
70. Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., Silva, E.G.P., Portugal, L.A., Reis, P.S., Souza, A.S., Santos, W.N.L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chemical Acta, 597, 179–186.
71. Hatambeygi, N., Abedi,G., Talebi, M. (2011). Method development and validation for optimised separation of salicylic, acetyl salicylic and ascorbic acid in pharmaceutical formulations by hydrophilic interaction chromatography and response surface methodology. Journal of Chromatography A, 1218, 5995– 6003.
72. Wang, Y., Harrison, M., Clark, B.J. (2006). Optimising reversed-phase liquid chromatographic separation of an acidic mixture on a monolithic stationary phase with the aid of response surface methodology and experimental design. Journal of Chromatography A, 1105, 199–207.
73. Gonzalez, A., Foster, K.L., Hanrahan, G. (2007). Method development and validation for optimized separation of benzo[α] pyrene–quinone isomers using liquid chromatography–mass spectrometry and chemometric response surface methodology. Journal of Chromatography A, 1167, 135–142.