http://dx.doi.org/10.4322/sc.2016.005

 

Chiral derivatives of xanthones: applications in Medicinal Chemistry and a new approach in Liquid Chromatography

Fernandes, Carla; Tiritan, Maria Elizabeth; Pinto, Madalena M. M.

Palavras-chave: Xanthones, chiral, enantioselectivity, chiral stationary phases, liquid chromatography.

Resumo: Over several years, the xanthonic derivatives have been the focus of many studies essentially, due their broad range of biological and pharmacological activities. Recently, chiral derivatives of xanthones (CDX) have come to arouse great interest considering both the enantioselectivity studies associated with biological activity as well as chiral chromatography. In a perspective of Medicinal Chemistry, thirty enantiomers corresponding to fifteen pairs of CDX (small molecules), were synthesized and tested to assess the biological/ pharmacological activity, including inhibition of growth of human tumor cell lines, showing in some cases very interesting effects. The most active compound showed values of GI 50 of 32.15 ± 2.03 μ M for A375-C5, 22.55 ± 1.99 μ M for MCF-7, and 14.05 ± 1.82 μ M for NCI-H460. Furthermore, the growth inhibitory effects, in some cases, demonstrated to be depending on the stereochemistry of the CDXs. Besides the potential as new drugs, CDX present structures with interest as chiral selectors for chromatography. In this context some CDX were selected and bound to a chromatographic support to new application as chiral stationary phase in liquid chromatography. New xanthonic chiral stationary phases represent completely different selectors based on small molecules, with promising results, high stability and reproducibility. Thus, it is concluded that CDX have important applications in the field of Medicinal Chemistry not only as potential drugs but also with an application “out of the box” as chiral selectors of new stationary phases for liquid chromatography..


Referências Bibliográficas

1. Francotte E, Lindner W. Methods and Principles in Medicinal Chemistry: Chirality in Drug Research. WILEY-VCH, editor. Weinheim, Germany2006.
2. Ward TJ, Ward KD. Chiral separations: A review of current topics and trends. Anal Chem. 2012;84(2):626-35.
3. Zhang Y, Wu DR, Wang-Iverson DB, Tymiak AA. Enantioselective chromatography in drug discovery. Drug Discov Today. 2005;10(8):571-7.
4. Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F. Recent applications in chiral high performance liquid chromatography: A review. Anal Chim Acta. 2011;706:205-22.
5. Ribeiro AR, Maia AS, Cass QB, Tiritan ME. Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: An overview. J Chromatogr B Anal Technol Biomed Life Sci. 2014;968:8-21.
6. Bojarski J, Aboul-Enein HY, Ghanem A. What’s New in Chromatographic Enantioseparations. Curr Anal Chem. 2005;1:59-77.
7. Beesley TE. Review of chiral stationary phase development and chiral applications. LC-GC Europe. 2011;24(5):270-6.
8. Lämmerhofer M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J Chromatogr A. 2010;1217(6):814-56.
9. Felix G, Berthod A. Commercial chiral stationary phases for the separations of clinical racemic drugs. Sep Purif Rev. 2007;36(4):285-481.
10. Fernandes C, Tiritan ME, Cass Q, Kairys V, Fernandes MX, Pinto M. Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases. J Chromatogr A. 2012;1241:60-8.
11. Fernandes C, Pinto M, Tiritan ME. Enantioresolution of Chiral Derivatives of Xanthones on Different Types of Liquid Chromatography Stationary Phases: A Comparative Study. Current Chromatography. 2014;1(2):139-50.
12. Fernandes C, Brandão P, Santos A, Tiritan ME, Afonso C, Cass QB, et al. Resolution and determination of enantiomeric purity of new chiral derivatives of xanthones using polysaccharide-based stationary phases. J Chromatogr A. 2012;1269:143-53.
13. Fernandes C, Palmeira A, Santos A, Tiritan ME, Afonso C, Pinto MM. Enantioresolution of chiral derivatives of xanthones on (S,S)-Whelk-O1 and l -phenylglycine stationary phases and chiral recognition mechanism by docking approach for (S,S)-Whelk-O1. Chirality. 2013;25(2):89-100.
14. Gales L, Damas AM. Xanthones – A structural perspective. Curr Med Chem. 2005;12(21):2499-515.
15. Pinto MMM, Sousa ME, Nascimento MSJ. Xanthone derivatives: New insights in biological activities. Curr Med Chem. 2005;12(21):2517-38.
16. Masters KS, Bräse S. Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chem Rev. 2012;112(7):3717-76.
17. Na Y. Recent cancer drug development with xanthone structures. J Pharm Pharmacol. 2009;61(6):707-12.
18. Wezeman T, Bräse S, Masters KS. Xanthone dimers: A compound family which is both common and privileged. Nat Prod Rep. 2015;32(1):6-28.
19. Pinto MMM, Castanheiro RAP, Kijjoa A. Xanthones from Marine-Derived Microorganisms: Isolation, Structure Elucidation, and Biological Activities. In: John Wiley & Sons L, editor. Encyclopedia of Analytical Chemistry. 272014. p. 1-21.
20. Vieira LMM, Kijjoa A. Naturally-occurring xanthones: Recent developments. Curr Med Chem. 2005;12(21):2413-46.
21. Pang MH, Kim Y, Jung KW, Cho S, Lee DH. Foundation review: A series of case studies: Practical methodology for identifying antinociceptive multi-target drugs. Drug Discov Today. 2012;17(9-10):425-34.
22. Cavalli A, Bolognesi ML, Mìnarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51(3):347-72.
23. Csermely P, Ágoston V, Pongor S. The efficiency of multi-target drugs: The network approach might help drug design. Trends Pharmacol Sci. 2005;26(4):178-82.
24. Sousa ME, Pinto MMM. Synthesis of xanthones: An overview. Curr Med Chem. 2005;12(21):2447-79.
25. Azevedo CMG, Afonso CMM, Pinto MMM. Routes to xanthones: An update on the synthetic approaches. Curr Org Chem. 2012;16(23):2818-67.
26. Azevedo CMG, Afonso CMM, Soares JX, Reis S, Sousa D, Lima RT, et al. Pyranoxanthones: Synthesis, growth inhibitory activity on human tumor cell lines and determination of their lipophilicity in two membrane models. Eur J Med Chem. 2013;69:798-816.
27. Azevedo CMG, Afonso CMM, Sousa D, Lima RT, Helena Vasconcelos M, Pedro M, et al. Multidimensional optimization of promising antitumor xanthone derivatives. Bioorg Med Chem. 2013;21(11):2941-59.
28. Castanheiro RAP, Pinto MMM, Cravo SMM, Pinto DCGA, Silva AMS, Kijjoa A. Improved methodologies for synthesis of prenylated xanthones by microwave irradiation and combination of heterogeneous catalysis (K10 clay) with microwave irradiation. Tetrahedron. 2009;65(19):3848-57.
29. Castanheiro RAP, Pinto MMM, Silva AMS, Cravo SMM, Gales L, Damas AM, et al. Dihydroxyxanthones prenylated derivatives: Synthesis, structure elucidation, and growth inhibitory activity on human tumor cell lines with improvement of selectivity for MCF-7. Bioorg Med Chem. 2007;15(18):6080-8.
30. Castanheiro RAP, Silva AMS, Campos NAN, Nascimento MSJ, Pinto MMM. Antitumor activity of some prenylated xanthones. Pharmaceuticals. 2009;2(2):33-43.
31. Correia-Da-Silva M, Sousa E, Duarte B, Marques F, Carvalho F, Cunha-Ribeiro LM, et al. Polysulfated xanthones: Multipathway development of a new generation of dual anticoagulant/antiplatelet agents. J Med Chem. 2011;54(15):5373-84.
32. Costa E, Sousa E, Nazareth N, Nascimento MSJ, Pinto MMM. Synthesis of xanthones and benzophenones as inhibitors of tumor cell growth. Lett Drug Des Discov. 2010;7(7):487-93.
33. Leão M, Pereira C, Bisio A, Ciribilli Y, Paiva AM, Machado N, et al. Discovery of a new small-molecule inhibitor of p53-MDM2 interaction using a yeast-based approach. Biochem Pharmacol. 2013;85(9):1234-45.
34. Paiva AM, Sousa ME, Camões A, Nascimento MSJ, Pinto MMM. Prenylated xanthones: antiproliferative effects and enhancement of the growth inhibitory action of 4-hydroxytamoxifen in estrogen receptor-positive breast cancer cell line. Med Chem Res. 2011:1-7.
35. Palmeira A, Paiva A, Sousa E, Seca H, Almeida GM, Lima RT, et al. Insights into the in vitro antitumor mechanism of action of a new pyranoxanthone. Chem Biol Drug Des. 2010;76(1):43-58.
36. Palmeira A, Vasconcelos MH, Paiva A, Fernandes MX, Pinto M, Sousa E. Dual inhibitors of P-glycoprotein and tumor cell growth: (Re)discovering thioxanthones. Biochem Pharmacol. 2012;83(1):57-68.
37. Pedro M, Cerqueira F, Sousa ME, Nascimento MSJ, Pinto M. Xanthones as inhibitors of growth of human cancer cell lines and their effects on the proliferation of human lymphocytes in vitro. Bioorg Med Chem. 2002;10(12):3725-30.
38. Pinto E, Afonso C, Duarte S, Vale-Silva L, Costa E, Sousa E, et al. Antifungal Activity of Xanthones: Evaluation of their Effect on Ergosterol Biosynthesis by High-performance Liquid Chromatography. Chem Biol Drug Des. 2011;77(3):212-22.
39. Portela C, Afonso CMM, Pinto MMM, Lopes D, Nogueira F, do Rosário V. Synthesis and antimalarial properties of new chloro-9H-xanthones with an aminoaikyl side chain. Chem Biodiversity. 2007;4(7):1508-19.
40. Saraiva L, Fresco P, Pinto E, Sousa E, Pinto M, Gonçalves J. Synthesis and in vivo modulatory activity of protein kinase C of xanthone derivatives. Bioorg Med Chem. 2002;10(10):3219-27.
41. Saraiva L, Fresco P, Pinto E, Sousa E, Pinto M, Gonçalves J. Inhibition of protein kinase C by synthetic xanthone derivatives. Bioorg Med Chem. 2003;11(7):1215-25.
42. Silva R, Palmeira A, Carmo H, Barbosa DJ, Gameiro M, Gomes A, et al. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity. Arch Toxicol. 2014.
43. Sousa E, Paiva A, Nazareth N, Gales L, Damas AM, Nascimento MSJ, et al. Bromoalkoxyxanthones as promising antitumor agents: Synthesis, crystal structure and effect on human tumor cell lines. Eur J Med Chem. 2009;44(9):3830-5.
44. Sousa ME, Tiritan ME, Belaz KRA, Pedro M, Nascimento MSJ, Cass QB, et al. Multimilligram enantioresolution of low-solubility xanthonolignoids on polysaccharide chiral stationary phases using a solid-phase injection system. J Chromatogr A. 2006;1120(1-2):75-81.
45. Sousa EP, Silva AMS, Pinto MMM, Pedro MM, Cerqueira FAM, Nascimento MSJ. Isomeric kielcorins and dihydroxyxanthones: Synthesis, structure elucidation, and inhibitory activities of growth of human cancer cell lines and on the proliferation of human lymphocytes in vitro. Helv Chim Acta. 2002;85(9):2862-76.
46. Palmeira A, Sousa E, Fernandes MX, Pinto MM, Helena Vasconcelos M. Multidrug resistance reversal effects of aminated thioxanthones and interaction with cytochrome P450 3A4. J Pharm Pharm Sci. 2012;15(1):31-45.
47. Palmeira A, Rodrigues F, Sousa E, Pinto M, Vasconcelos MH, Fernandes MX. New uses for old drugs: Pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem Biol Drug Des. 2011;78(1):57-72.
48. Castanheiro R. Derivados Xantónicos Prenilados: Optimização de Métodos de Obtenção, Caracterização Estrutural e Avaliação de Bioactividades [thesis]. Porto: Universidade do Porto; 2009.
49. Costa E. Synthesis of Xanthone/Benzophenone Derivatives by Strategy based in molecular targets: potential applications for the treatment of hormone-dependent breast tumors [thesis]. Porto: Universidade do Porto; 2011.
50. Fernandes E. Síntese e Elucidação Estrutural de Xantonas, Xantonolignóides e Determinação da Actividade Biológica [thesis]. Porto: Universidade do Porto; 1996.
51. Fernandes EGR, Pinto MMM, Silva AMS, Cavaleiro JAS, Gottlieb OR. Synthesis and structural elucidation of xanthonolignoids: Trans-(±)- kielcorin B and trans-(±)-isokielcorin B. Heterocycles. 1999;51(4):821-8.
52. Maia F, Almeida MdR, Gales L, Kijjoa A, Pinto MMM, Saraiva MJ, et al. The binding of xanthone derivatives to transthyretin. Biochem Pharmacol. 2005;70(12):1861-9.
53. Portela C. Obtenção e Estudo de Derivados Xantónicos, Candidatos a Novos Agentes Antimaláricos [thesis]. Porto: Universidade do Porto; 2006.
54. Silva MCd. Synthesis and Biological Activities of Polysulfated Small Molecules: New Cardiovascular Agents [thesis]. Porto: Universidade do Porto; 2011.
55. Sousa E. Derivados de xanten-9-ona: Síntese, Determinação Estrutural e Avaliação de Actividades Biológicas [thesis]. Porto: Universidade do Porto; 2003.
56. Marona H, Szkaradek N, Karczewska E, Trojanowska D, Budak A, Bober P, et al. Antifungal and antibacterial activity of the newly synthesized 2-xanthone derivatives. Archiv der Pharmazie. 2009;342(1):9-18.
57. Jastrz ȩ bska-Wi ȩ sek M, Czarnecki R, Marona H. The anticonvulsant, local anesthetic and hemodynamic properties of some chiral aminobutanol derivatives of xanthone. Acta Pol Pharm Drug Res. 2008;65(5):591-600.
58. Marona H, Pekala E, Antkiewicz-Michaluk L, Walczak M, Szneler E. Anticonvulsant activity of some xanthone derivatives. Bioorg Med Chem. 2008;16(15):7234-44.
59. Marona H, Librowski T, Ceg ł a M, Erdo ǧ an C, Ş ahin NÖ. Antiarrhythmic and antihypertensive activity of some xanthone derivatives. Acta Pol Pharm Drug Res. 2008;65(3):383-90.
60. Jastrzebska-Wiesek M, Librowski T, Czarnecki R, Marona H, Nowak G. Central activity of new xanthone derivatives with chiral center in some pharmacological tests in mice. Pol J Pharmacol. 2003;55(3):461-5.
61. Marona H. Synthesis and anticonvulsant effects of some aminoalkanolic derivatives of xanthone. Pharmazie. 1998;53(10):672-6.
62. Marona H, Szkaradek N, Kubacka M, Bednarski M, Filipek B, Cegla M, et al. Synthesis and evaluation of some xanthone derivatives for anti-arrhythmic, hypotensive properties and their affinity for adrenergic receptors. Arch Pharm (Weinheim). 2008;341(2):90-8.
63. Szkaradek N, Stachura K, Waszkielewicz AM, Ceg ł a M, Szneler E, Marona H. Synthesis and antimycobacterial assay of some xanthone derivatives. Acta Pol Pharm Drug Res. 2008;65(1):21-8.
64. Marona H, P ȩ kala E, Filipek B, Macia ̧ g D, Szneler E. Pharmacological properties of some aminoalkanolic derivatives of xanthone. Pharmazie. 2001;56(7):567-72.
65. Rajtar G, Zól ł kowska D, Kleinrok Z, Marona H. Antiplatelets activity of some xanthone derivatives. Acta Pol Pharm Drug Res. 1999;56(4):319-24.
66. Marona H. Evaluation of some 2-substituted derivatives of xanthone for anticonvulsant properties. Pharmazie. 1998;53(6):405-9.
67. Marona H, Ǵ rka Z, Szneler E. Aminoalkanolic derivatives of xanthone with potential antiepileptic activity. Pharmazie. 1998;53(4):219-23.
68. Fernandes C, Masawang K, Tiritan ME, Sousa E, De Lima V, Afonso C, et al. New chiral derivatives of xanthones: Synthesis and investigation of enantioselectivity as inhibitors of growth of human tumor cell lines. Bioorg Med Chem. 2014;22(3):1049-62.
69. Fernandes C, Oliveira L, Tiritan ME, Leitao L, Pozzi A, Noronha-Matos JB, et al. Synthesis of new chiral xanthone derivatives acting as nerve conduction blockers in the rat sciatic nerve. Eur J Med Chem. 2012;55:1-11.
70. Karak D, Banerjee A, Lohar S, Sahana A, Mukhopadhyay SK, Adhikari SS, et al. Xanthone based Pb2+ selective turn on fluorescent probe for living cell staining. Anal Methods. 2013;5(1):169-72.
71. Ghosh KK, Jeong YM, Kang NY, Lee J, Si Yan Diana W, Kim JY, et al. The development of a nucleus staining fluorescent probe for dynamic mitosis imaging in live cells. Chem Commun. 2015;51(45):9336-8.
72. Takashima I, Kawagoe R, Hamachi I, Ojida A. Development of an AND logic-gate-type fluorescent probe for ratiometric imaging of autolysosome in cell autophagy. Chem Eur J. 2015;21(5):2038-44.
73. Sathyadevi P, Chen YJ, Wu SC, Chen YH, Wang YM. Reaction-based epoxide fluorescent probe for in vivo visualization of hydrogen sulfide. Biosens Bioelectron. 2015;68:681-7.
74. Fernandes C, Tiritan ME, Pinto M. Small molecules as chromatographic tools for HPLC enantiomeric resolution: Pirkle-type chiral stationary phases evolution. Chromatographia. 2013;76(15-16):871-97.
75. Fernandes C. Synthesis of Chiral Derivatives of Xanthones: Application as HPLC Stationary Phases and Potential Bioactive Agents in Pharmaceutical and Medicinal Chemistry [thesis]. Porto: Universidade do Porto; 2012.
76. Pinto M, Tiritan ME, Fernandes C, Cass Q. Fases Estacionárias Quirais baseadas em Derivados Xantónicos. Boletim da Propriedade Industrial no 2011/01/21, Patent PT 104679. 2011.
77. Pirkle WH, House DW, Finn JM. Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. J Chromatogr. 1980;192(1):143-58.
78. Pirkle WH, Pochapsky TC. Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem Rev. 1989;89(2):347-62.
79. Welch CJ. Evolution of chiral stationary phase design in the Pirkle laboratories. J Chromatogr A. 1994;666(1-2):3-26.
80. Lee W, Snyder SE, Volkers PI, Pirkle WH, Engebretson DA, Boulanger WA, et al. Assessing chiral self-recognition using chirakl stationary phases. Tetrahedron. 2011;67(37):7143-7.