https://dx.doi.org/10.4322/sc.2016.007

 

Determination of nine fungicides in orange juice by ultra performance liquid chromatography coupled to tandem mass spectrometry and mini-Luke extraction

Reichert, Jaqueline F.; Pizzutti, Ionara R.; Dias, Jonatan V.; Cardoso, Carmem D.

Palavras-chave: fungicides, mini-Luke, orange juice, UPLC-MS/MS.

Resumo: Brazil is the largest producer of orange juice, however, many of the pesticides allowed in citrus in Brazil are not allowed by importing countries. In this study mini-Luke extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) were used for the determination of nine fungicide pesticides in orange juice, all allowed in Brazil. Method linearity was studied in the range of 0.1 to 100 ng mL-1. Recovery and relative standard deviation (RSD%) were within the expected range (70 to 120% and ≤ 20%, respectively) for all fungicides, except for thiophanate-methyl. Quantification limit values were 10, 20 and 50 μg kg-1 for six, two and one fungicide studied, respectively, are equal to or lower than the values of the maximum residue limits established by the Brazilian, American and European legislation. The validated method was applied in the analysis of natural and processed orange juice (concentrate, diluted and integral), in a total of 20 samples. All samples showed contamination by piraclostrobin and trifloxistrobin; some samples showed contamination by carbendazim, tebuconazole and thiophanate-methyl.


Referências Bibliográficas

[1] Galaverna G, Di Silvestro G, Cassano A, Sforza S, Dossena A, Drioli E, et al. A new integrated membrane process for the production of concentrated blood orange juice: Effect on bioactive compounds and antioxidant activity. Food Chem. 2008;106(2):1021–30.
[2] PORTO SI, NETO AADO, SOUSA FOB DE. Acompanhamento da Safra de Laranja – 2013/2014 (Conab). 2013.
[3] GLOBO. Suco: FDA encontra carbendazim em 11 amostras. 2012. [citado em 14 Dez 2015]. Disponível em: https://g1.globo.com/economia/agronegocios/noticia/2012/01/suco-fda-encontra-carbendazim-em-11-amostras.html
[4] Fernández R, Garrido AF, Martínez LJV, Romero RG, Hernández EMT e. One-year Routine Application of a New and Rapid Method Based on Ultra Performance Liquid Chromtography-Tandem Mass Spectrometry to the Analysis of Selected Pesticides in Citric Fruits. Anal Sci. 2009;25:535–40.
[5] Topuz S, Özhan G, Alpertunga B. Simultaneous determination of various pesticides in fruit juices by HPLC-DAD. Food Control. 2005;16(1):87–92.
[6] Dreassi E, Zanfini A, Zizzari AT, La Rosa C, Botta M, Corbini G. Lc/Esi/Ms/Ms determination of postharvest fungicide residues in citrus juices. LWT - Food Sci Technol. 2010;43(9):1301–6.
[7] Romero-González R, Garrido Frenich A, Martínez Vidal JL. Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry. Talanta. 2008;76(1):211–25.
[8] Hiemstra M, de Kok A. Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1154(1-2):3–25.
[9] Soler C, Mañes J, Picó Y. Routine application using single quadrupole liquid chromatography–mass spectrometry to pesticides analysis in citrus fruits. J Chromatogr A. 2005;1088(1-2):224–33.
[10] Sagratini G, Mañes J, Giardiná D, Damiani P, Picó Y. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography-mass spectrometry. J Chromatogr A. 2007;1147(2):135–43.
[11] Radišić M, Grujić S, Vasiljević T, Laušević M. Determination of selected pesticides in fruit juices by matrix solid-phase dispersion and liquid chromatography–tandem mass spectrometry. Food Chem. 2009;113(2):712–9.
[12] Borges KB, Figueiredo EC de, Queiroz MEC. Preparo de amostras para análise de compostos orgânicos. 1. ed. Rio de Janeiro: LTC; 2015. 263 p.
[13] Gilbert-López B, García-Reyes JF, Mezcua M, Molina-Díaz A, Fernández-Alba AR. Determination of postharvest fungicides in fruit juices by solid-phase extraction followed by liquid chromatography electrospray time-of-flight mass spectrometry. J Agric Food Chem. 2007;55(26):10548–56.
[14] Singh SB, Foster GD, Khan SU. Determination of thiophanate methyl and carbendazim residues in vegetable samples using microwave-assisted extraction. J Chromatogr A. 2007;1148(2):152–7.
Scientia Chromatographica 2015; 7(4):251-259 259
[15] ANVISA. Monografia de agrotóxicos. [Citado em 14 Dez 2015]. Disponível em: https://portal.anvisa.gov.br/wps/content/Anvisa+Portal/Anvisa/Inicio/Agrotoxicos+e+Toxicologia/Assuntos+de+Interesse/Monografias+de+Agrotoxicos
[16] U. S. EPA. Chemicals Evaluated for Carcinogenic Potential. [Citado em 14 Dez 2015]. Disponível em:rado de: https://npic.orst.edu/chemicals_evaluated.pdf
[17] UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. MEMORANDUM. [Citado em 14 Dez 2015]. Disponível em: https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-128997_1-Jun-07_a.pdf
[18] Rodrigues ET, Lopes I, Pardal MÂ. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review. Environ Int. 2013;53:18–28.
[19] INMETRO. Orientação sobre validação de métodos analíticos DOQ-CGCRE-008 revisão 04-Jul/2011. 2011. [Citado em 12 Dez 2015]. Disponível em: https://www.inmetro.gov.br/sidoq/arquivos/Cgcre/DOQ/DOQ-Cgcre-8_04.pdf
[20] SANCO. Method validation and quality control procedures for pesticide residues analysis in food and feed. Document No. 12495/2011, 2011.
[21] ANVISA. Resolução-Re Nº 899, de 29 de maio de 2003. [Citado em 12 Dez 2015]. Disponível em: https://portal.anvisa.gov.br/wps/wcm/connect/4983b0004745975da005f43fbc4c6735/RE_899_2003_Determina+a+publicação+do+Guia+para+validação+de+métodos+analíticos+e+bioanalíticos.pdf?MOD=AJPERES
[22] Guo B, Huang Z, Wang M, Wang X, Zhang Y, Chen B, et al. Simultaneous direct analysis of benzimidazole fungicides and relevant metabolites in agricultural products based on multifunction dispersive solid-phase extraction and liquid chromatography-mass spectrometry. J Chromatogr A. 2010;1217(29):4796–807.
[23] Fernández M, Rodríguez R, Picó Y, Mañes J. Liquid chromatographic-mass spectrometric determination of post-harvest fungicides in citrus fruits. J Chromatogr A. 2001;912:301–10.
[24] SANCO. Method validation and quality control procedures for pesticide residues analysis in food and feed. Document No. 10684/2009, 2009.
[25] European Union (E.U.) Pesticides database. [Citado em 14 Dez 2015]. Disponível em: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database-redirect/index_en.htm
[26] ELECTRONIC CODE OF FEDERAL REGULATIONS. U. S. Government Publishing Office. [Citado em 14 Dez 2015]. Disponível em: https://www.ecfr.gov/cgi-bin/text-idx?SID=a3b649316ccb17c31211db2edd81f789&mc=true&node=pt40.24.180&rgn=div5#se40.24.180_1412.
[27] Niessen WMA, Manini P, Andreoli R. Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2006;25:881–99.
[28] Martins GL, Friggi C a., Prestes OD, Vicari MC, Friggi D a., Adaime MB, et al. Simultaneous LC-MS/MS Determination of Imidazolinone Herbicides Together with Other Multiclass Pesticide Residues in Soil. CLEAN - Soil, Air, Water. outubro de 2014;42:1441–9.