http://dx.doi.org/10.4322/sc.2017.002

 

Fases estacionárias/ extratoras core-shell: desenvolvimento, características e aplicações

Ferreira, Claudio de C.; Jardim, Isabel C. S. F.

Palavras-chave: core-shell, cromatografia líquida, fase estacionária, preparo de amostra, sorvente.

ResumoFases estacionárias (FE) core-shell foram desenvolvidas para se tornarem fortes concorrentes às partículas sub-2 μm, empregadas em Cromatografia Líquida de Ultra Alta Eficiência (UHPLC), por fornecerem separações rápidas, com alta eficiência e sem aumento na pressão, podendo ser utilizadas em um sistema cromatográfico convencional, dispensando, dessa forma, o uso de aparelhos mais sofisticados como o utilizado em UHPLC. A morfologia das partículas core-shell é o ponto chave para o entendimento do desempenho cromatográfico atribuído à essa tecnologia. O menor caminho de difusão gerado pela fina camada (shell ) dessas partículas favorece a transferência de massa e, consequentemente, melhora a eficiência cromatográfica e diminui o tempo de análise. Essas partículas também são produzidas em escala nanométrica e aplicadas como sorventes em preparo de amostra, sendo muitas delas enquadradas na técnica de extração magnética em fase sólida (MSPE) que tem como vantagem o uso de um campo magnético para separar o sorvente do meio de extração. Existem vários métodos descritos na literatura para produção das partículas core-shell que são apresentados nesta revisão juntamente com suas características, vantagens, desvantagens e aplicações.


Referências Bibliográficas

[1] Fekete S, Oláh E, Fekete J. Fast liquid chromatography: The domination of core – shell and very fine particles. J. Chromatogr. A. 2012;1228:57–71.
[2] Lanças FM. Aumentando a eficiência das colunas de HPLC por meio da diminuição do diâmetro das partículas da fase estacionária: até onde ? Sci. Chromatogr. 2011;3(1):17–23.
[3] Maldaner L, Jardim ICSF. UHPLC- Uma abordagem atual: desenvolvimento e desafios recentes. Sci. Chromatogr. 2012;4(3):197–207.
[4] Lanças FM. O Renascimento das partículas superficialmente porosas (“core shell particles”) em HPLC. Sci Chromatogr. 2010;2:47–54.
[5] Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core – shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem J. 2014;116:62–76.
[6] Liu J, Qiao SZ, Chen JS, Lou XW, Xing X, Lu GQ. Chemomm Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011;47:12578–91.
[7] Horvath C, Lipsky SR. Column Design in High Pressure Liquid Chromatography. J. Chromatogr. Sci. 1969;7(2):109–16.
[8] Kirkland JJ. Superficially Porous Silica Microspheres for the Fast High-Performance Liquid Chromatography of Macromolecules. Anal. Chem. 1992;64(13):1239–45.
[9] Unger KK, Skudas R, Schulte MM. Particle packed columns and monolithic columns in high-performance liquid chromatographycomparison and critical appraisal. J. Chromatogr. A. 2008;1184(1–2):393–415.
[10] Kirkland JJ, Truszkowski FA, Jr. Dilks C., Engel GS. Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules. J. Chromatogr. A. 2000;890(1):3–13.
[11] El-Toni AM, Habila MA, Labis JP, ALOthman ZA, Alhoshan M, Elzatahry AA, et al. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale. Royal Society of Chemistry. 2016;8:2510–31.
[12] Hayes R, Ahmed A, Edge T, Zhang H. Core – shell particles : Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A. 2014;1357:36–52.
[13] Stöber W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range 1. J. Colloid. Interface Sci. 1968;26:62–9.
[14] Guiochon G, Gritti F. Shell particles, trials, tribulations and triumphs. J. Chromatogr. A. 2011;1218(15):1915–38.
[15] Chen W, Jiang K, Mack A, Sachok B, Zhu X, Barber WE, et al. Synthesis and optimization of wide pore superficially porous particles by a one-step coating process for separation of proteins and monoclonal antibodies. J. Chromatogr. A. 2015;1414:147–57.
[16] Tanaka N, Mccalley D V. Core − Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal Chem. 2016;88:279–98.
[17] Kirkland JJ, Truszkowski FA, Dilks Jr CH, Engel CS. Superficially Porous Silica Microspheres for the Fast High-Performance LiquidChromatography of Macromolecules. J. Chromatogr. A. 2000;64(890):3–13.
[18] Chen W, Wei CT. Superficially Porous Particles and Methods of Making Them. USA; Patent#US7846337B2, 2010.
[19] Ahmed A, Ritchie H, Myers P, Zhang H. One-pot synthesis of spheres-on-sphere silica particles from a single precursor for fast HPLC with low back pressure. Adv. Mater. 2012;24(45):6042–8.
[20] Cai Y, Yan Z, NguyenVan M, Wang L, Cai Q. Magnetic solid phase extraction and gas chromatography-mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons. J. Chromatogr. A. 2015;1406:40–7.
[21] Qiao Z, Perestrelo R, Reyes-Gallardo EM, Lucena R, Cárdenas S, Rodrigues J, et al. Octadecyl functionalized core-shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites. J. Chromatogr. A. 2015;1393:18–25.
[22] Chen X, Ding N, Zang H, Yeung H, Zhao R, Cheng C, et al. Fe 3 O4 @ MOF core – shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J. Chromatogr. A. 2013;1304:241–5.
[23] Zhao Y, Zhou L, Pan S, Zhan P. Fast determination of 22 sulfonamides from chicken breast muscle using core – shell nanoring aminofunctionalized superparamagnetic molecularly imprinted polymer followed by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2014;1345:17–28.
[24] Tan L, Li W, Li H, Tang Y. Development of surface imprinted core – shell nanoparticles and their application in a solid-phase dispersion extraction matrix for methyl parathion. J. Chromatogr. A. 2014;1336:59–66.
[25] Zhang X, Niu H, Li W, Shi Y, Cai Y. A core–shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chem. Commun. 2011;47:4454–6.
[26] Es’haghi Z, Esmaeili-Shahri E. Sol-gel-derived magnetic SiO2 /TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography. J. Chromatogr. B. 2014;973:142–51.
[27] Kong X, Gao R, He X, Chen L, Zhang Y. Synthesis and characterization of the core-shell magnetic molecularly imprinted polymers (Fe 3 O4 @MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. J. Chromatogr. A. 2012;1245:8–16.
[28] Saini G, Jensen DS, Wiest LA, Vail MA, Dadson A, Lee ML, et al. Core-shell diamond as a support for solid-phase extraction and highperformance liquid chromatography. Anal. Chem. 2010;82(11):4448–56.
[29] Snyder LR, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography. 3rd ed. New Jersey: John Wiley & Sons; 2010.
[30] Phenomenex I. Core-Shell Technology. 2016 [cited 2016 Feb 7]. Available from: https://www.phenomenex.com/Kinetex/CoreShellTechnology
[31] Gritti F, Guiochon G. Facts and Legends on Columns Packed with Sub-3-µm Core-Shell Particles. LC-GC N. AM. 2012;7(30): 586-95.
[32] Abrahim A, Al-Sayah M, Skrdla P, Bereznitski Y, Chen Y, Wu N. Practical comparison of 2.7 µm fused-core silica particles and porous sub-2 µm particles for fast separations in pharmaceutical process development. J. Pharm. Biomed. Anal. 2010;51(1):131–7.
[33] Lomsadze K, Jibuti G, Farkas T, Chankvetadze B. Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core-shell silica particles. J. Chromatogr. A.2012;1234:50–5.
[34] Maldaner L, Collins CH, Jardim ICSF. Fases estacionátias modernas para cromatografia líquida de alta eficiência em fase reversa. Quim. Nova. 2010;33(7):1559–68.
[35] Oláh E, Fekete S, Fekete J, Ganzler K. Comparative study of new shell-type, sub-2 µm fully porous and monolith stationary phases, focusing on mass-transfer resistance. J. Chromatogr. A. 2010;1217(23):3642–53.
[36] Gritti F. The Mass Transfer Mechanism of Columns Packed With sub-3 µm, Shell Particles and its Reproducibility for Low- and HighMolecular Weight Compounds. Chromatogr. Today. may/june 2012:4–11.
[37] Danielson, N.D. Beaver, L.G. Wangsa J. Fluoropolymers and fluorocarbon bonded phases as column packings for liquid chromatography. J. Chromatogr. 1991;544:187–199.
[38] Felix, G. Bartrand C. HPLC on Pentafluorophenithyl Silica Gel. J. High Resolut Chromatogr. 1987;10:411–2.
[39] Preti R, Antonelli ML, Bernacchia R, Vinci G. Fast determination of biogenic amines in beverages by a core-shell particle column. Food Chem. 2015;187:555–62.
[40] Dolzan MD, Spudeit DA, Breitbach ZS, Barber WE, Micke GA, Armstrong DW. Comparison of superficially porous and fully porous silica supports used for a cyclofructan 6 hydrophilic interaction liquid chromatographic stationary phase. J. Chromatogr. A. 2014;1365:124–30.
[41] Qiu H, Loukotková L, Sun P, Tesařová E, Bosáková Z, Armstrong DW. Cyclofructan 6 based stationary phases for hydrophilic interaction liquid chromatography. J. Chromatogr. A. 2011;1218(2):270–9.
[42] Guo B, Ji S, Zhang F, Yang B, Gu J, Liang X. Preparation of C18-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles for extraction and determination of phthalic acid esters in Chinese herb preparations. J. Pharm. Biomed. Anal. 2014;100:365–8.