https://dx.doi.org/10.4322/sc.2017.003

 

Análisis por GC/FID y GC/MS de la composición química y estudio de la actividad antioxidante de los metabolitos secundarios volátiles, aislados por diferentes técnicas, de Satureja viminea L. cultivada en Colombia

Stashenko, Elena E.; Gutiérrez-Avella, Dora M.; Martínez, Jairo René; Manrique-López, Diana Lisseth

Palavras-chave: Satureja viminea L., aceite esencial, MWHD, SDE, SFE-CO2 , HS-SPME, GC/FID, GC/MS, actividad antioxidante.

Resumo: Los metabolitos secundarios volátiles de Satureja viminea L. se aislaron por diferentes técnicas, i.e., hidrodestilación asistida por microondas (MWHD), destilación-extracción simultánea con solvente (SDE), extracción con fluido supercrítico (SFE-CO2 ), y microextracción en fase sólida de espacio de cabeza (HS-SPME). La identificación de los componentes se realizó por GC-MS y su cuantificación por GC-FID, usando n-tetradecano como estándar interno (Istd). Los monoterpenos oxigenados p-ment- 3-en-8-ol (51,2%) y pulegona (17,8%) fueron los compuestos mayoritarios del aceite esencial, mientras que en los extractos, obtenidos por SDE y SFE-CO2 , el componente mayoritario, p-ment-3-en-8-ol, alcanzó 58.0% y 38.9%, respectivamente. En la fracción volátil de la planta, aislada por HS-SPME, predominaron p-ment-3-en-8-ol (46,2%), pulegona (11,2%) y pulegol (5,9%). La actividad antioxidante del aceite esencial, determinada por diferentes métodos (ensayos ORAC, ABTS+• y monitoreo de la peroxidación lipídica), en general, fue más baja que la de las sustancias de referencia, i.e., α-tocoferol (vitamina E) y 2,6-di-tert-butil-4-metilfenol (BHT), excepto la determinada por el ensayo ORAC, cuyo valor (1060 ± 16 mmol Trolox® /g sustancia) era casi dos veces más alto que la de las sustancias de referencia (vitamina E o BHT).


Referências Bibliográficas

[1] Epling C, Játiva C. Revisión del género Satureja en América del Sur. Brittonia, 1964; (16): 393–416.
[2] Niemeyer HM. Composition of essential oils from Satureja darwinii (Benth.) Briq. and S. multiflora (R. et P.) Briq. (Lamiaceae). Relationship between chemotype and oil yield in Satureja spp. Journal of Essential Oil Research 2010; 22(6): 477-482.
[3] Oke F, Aslimb B, Ozturka S, Altundag S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chemistry 2009; 112:874-879.
[4] Savikin KP, Menkovic NR, Zdunic GM, Tasic SR., Ristic MS, Stevic TR, Dajic-Stevanovic ZP. Chemical composition and antimicrobial activity of the essential oils of Micromeria thymifolia (Scop.) Fritsch., M. dalmatica Benth. and Satureja cuneifolia Ten. and its secretory elements. Journal of Essential Oil Research 2010; 22: 91-96.
[5] Bandoni A (Ed.) Los recursos vegetales aromáticos en Latinoamérica. Su aprovechamiento industrial para la producción de aromas y sabores. CYTED. Subprograma IV. Proyecto IV.6. Ed. 2 Universidad Nacional de la Plata, La Plata, Argentina, 2000; pp. 12-24, 87-92.
[6] Vila R, Iglesias J, Cañigueral S, Cicció F. Essential oil of Satureja viminea L. from Costa Rica. Journal of Essential Oil Research 2000; 12:279-282.
[7] Tucker AO, Maciarello MJ, Libbey LM. Essential oil of Satureja viminea (Lamiaceae). Journal of Essential Oil Research 2000; 12: 283-284.
[8] Suárez A, Echandi MM, Ulate G, Ciccio JF. Pharmacological activity of the essential oil of Satureja viminea (Lamiaceae). Revista de Biología Tropical 2003; 51:247-252.
[9] Stashenko EE, Martínez JR, Ruíz CA, Arias G, Durán C, Salgar W, Cala M. Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis. Journal of Separation Science 2010; 33: 93-103.
[10] Stashenko EE, Cervantes M, Combariza MY, Fuentes H, Martínez JR. HRGC/FID and HRGC/MSD analysis of the secondary metabolites obtained by different extraction methods from Lepechinia schiedeana, and in vitro evaluation of its antioxidant activity. Journal of High-Resolution Chromatography 1999; 22: 343-349.
[11] Godefroot M, Sandra PY, Versale M. New method for quantitative essential oil analysis. Journal of Chromatography A 1981; 203: 325-335.
[12] Stashenko EE, Ordóñez SA, Marín NA, Martínez JR. Determination of the volatile and semi-volatile secondary metabolites, and aristolochic acids in Aristolochia ringens Vahl. Journal of Chromatographic Science 2009; 47: 1-6.
[13] Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th Ed. Carol Stream, IL U.S.A.: Allured Publ. Corp.; 2007.
[14] Davies NW. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. Journal of Chromatography 1990; 503: 1-24.
[15] Joulain D, Konig WA. The atlas of spectral data of sesquiterpene hydrocarbons. Hamburg: E. B. Verlag; 1998.
[16] Babushok V, Linstrom P, Zenkevich I. Retention indices for frequently reported compounds of plant essential oils. Journal of Physical and Chemical Reference Data 2011; 40(4):43101_1-47.
[17] Nenadis N, Wang L, Tsimidou M, Zhans HY. Estimation of scavenging activity of phenolic compounds using the ABTS●+ assay. Journal of Agriculture and Food Chemistry 2004; 52: 4669-4674.
[18] Price JA, Sanny CG, Shevlin D. Application of manual assessment of oxygen radical absorbent capacity (ORAC) for use in high throughput assay of “total” antioxidant activity of drugs and natural products. Journal of Pharmachological and Toxicological Methods 2006; 54(1): 56-61.
[19] Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-Well format. Journal of Agriculture and Food Chemistry 2002; 50(16): 4437-4444.
[20] Stashenko EE, Ferreira MC, Sequeda LG, Cervantes M, Martínez JR, Wong JW. Comparison of extraction methods and detection system in the gas chromatographic analysis of volatile carbonyl compounds. Journal of Chromatography A 1997; 779: 360-369.
[21] Stashenko EE, Ferreira MC, Sequeda LG, Mateus A, Cervantes M, Martínez JR. Desarrollo de un método para monitoreo de la degradación oxidativa en lípidos y evaluación de la actividad antioxidante de productos naturales. Arte y Ciencia Cosmética 1997; 12: 20-27.
[22] Stashenko EE, Puertas MA, Salgar W, Delgado W, Martínez JR. Solid-phase microextraction with on fibre derivatisation applied to the analysis of volatile carbonyl compounds. Journal of Chromatography A 2000; 886(1-2):175-182.
[23] Stashenko EE,·Puertas MA, ·Martínez JR. SPME determination of volatile aldehydes for evaluation of in-vitro antioxidant activity. Analytical and Bioanayticall Chemistry 2002; 373(2):70-74.
[24] International Standard. Reference No. ISO 1041- 1973 (E). Essential oils. Determination of freezing point. First edition.
[25] International Standard. ISO 280: 1998 (E). Essential oils. Determination of refractive index. Second edition.
[26] International standard. Reference No. ISO 279: 1998 (E). Essential oils. Determination of relative density at 20ºC. Second edition.
[27] International standard. Reference No. ISO 11021: 1999. Essential oils - Determination of water content. Karl Fischer method. Second edition.
[28] International Standard. ISO 592: 1998 (E). Essential oils. Determination of optical rotation. Second edition.
[29] International standard. Reference No. ISO 1242: 1999 (E). Essential oils. Determination of acid value. Second edition.
[30] International standard. Reference No. ISO 875: 1999. Essential oils-Evaluation of miscibility in ethanol. Second edition.
[31] International Standard. ISO/TR 11018: 1997 (E). Essential oils. General guidance on the determination of flash point. First edition.
[32] Asekun OT, Grierson DS, Afolayan AJ. Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. subsp. Capensis. Food Chemistry 2007; 101(3):995-998.
[33] Thorup I, Würtzen G, Carstensen J, Olsen P. Short term toxicity study in rats dosed with pulegone and menthol. Toxicology Letters 1983; 19(3): 207-210.
[34] Anderson IB, Mullen WH, Meeker JE, Khojasteh-Bakht SC, Oishi S, Nelson SD, Blanc PD. Pennyroyal toxicity: Measurement of toxic metabolite levels in two cases and review of the literature. Annals of Internal Medicine 1996; 124:726-734.
[35] The National Toxicology Program. Technical report: Toxicology and carcinogenesis studies of pulegone. National Toxicology Program. Research Triangle Park, NC USA; 2011; 7-10, 17-19, 21-22, 77-80.
[36] Stashenko E, Jaramillo B, Martínez JR. HRGC/FID/MSD Analysis of volatile secondary metabolites from Lippia alba (Mill.) N.E. Brown, grown in Colombia, and evaluation of their in vitro antioxidant activity. Journal of Chromatography A 2004; 1025:99-103.
[37] Stashenko EE, Ruiz C, Muñoz A, Castañeda M, Martínez JR. Composition and antioxidant activity of essential oils of Lippia origanoides H.B.K. grown in Colombia. Natural Product Communications 2008; 3(4):563-566.
[38] Amorati R, Foti MC, Valgimigli L. Antioxidant activity of essential oils. Journal of Agriculture and Food Chemistry. 2013; 61:10835-10847.
[39] Tafurt G, Martínez JR, Stashenko EE. Evaluación de la actividad antioxidante de aceites esenciales en emulsiones degradadas por radiación ultravioleta. Revista Colombiana de Química 2005; 34(1):43-55.
[40] Politeo O, Jukié M, Miloš M.Chemical composition and antioxidant activity of essential oils of twelve spice plants. Croatica Chemica Acta 2006; 79(4):545-552.