http://dx.doi.org/10.4322/sc.2017.008

 

Solventes supramoleculares: Uma alternativa na microextração em fase líquida para análises cromatográficas

Medina, Deyber Arley Vargas; Cabal, Luis Felipe Rodríguez; Sartore, Douglas Morisue; Lima, Adriel Martins; Santos-Neto, Álvaro José dos

Palavras-chave: Solventes supramoleculares, Microextração líquido-líquido, SDME, HF-LPME, Cromatografia líquida.

Resumo: A crescente pressão para diminuir o uso de solventes orgânicos em laboratórios está promovendo a busca de solventes alternativos. A separação de fases contendo tensoativos, induzida pelas condições ambientais como temperatura e pH, tem sido amplamente utilizada em sistemas de extração analítica e pré-concentração de diversos compostos. A fase rica em surfactante é um líquido nano-estruturado, recentemente designado por solvente supramolecular (SUPRAS), um meio líquido formado por uma fase contínua e uma fase dispersa geradas à partir da associação espontânea de diferentes moléculas num sistema auto-organizado. Os SUPRAS apresentam propriedades macroscópicas específicas que surgem do alto nível de organização nas escalas nano e molecular. Uma das principais vantagens dos SUPRAS consiste em sua natureza anfifílica. Assim, a presença de diferentes graus de polaridade nas diferentes regiões dos agregados supramoleculares proporciona excelentes propriedades de solvatação para uma ampla variedade de compostos orgânicos e inorgânicos. Essa revisão abrange os progressos nos aspectos teóricos e práticos relacionados ao uso de solventes supramoleculares em extrações analíticas. Especial atenção destina-se ao uso de SUPRAS para microextrações, como SDME, LLME, HF-LPME e DLLME, em substituição aos solventes orgânicos usados tradicionalmente. Em suma, essa revisão tem como objetivo a discussão sobre a produção e aplicação de SUPRAS para microextrações de diversos analítos em uma grande diversidade de amostras.


Referências Bibliográficas

[1] BRAVO RUBIO, S. Tesis Doctoral : Sistemas Supramoleculares para la Extracción de Contaminantes Orgánicos. 2013a.
[2] BALLESTEROS-GÓMEZ, A.; SICILIA, M. D.; RUBIO, S. Supramolecular solvents in the extraction of organic compounds. A review. Analytica Chimica Acta, v. 677, n. 2, p. 108–130, 2010b.
[3] GÓMEZ, A. M. B. Diseño y aplicación de disolventes y adsorbentes supramoleculares para la extracción de contaminantes en alimentos y muestras ambientales. [s.l.] Universidad de Córdoba, 2012c.
[4] PALEOLOGOS, E. K.; GIOKAS, D. L.; KARAYANNIS, M. I. Micelle-mediated separation and cloud-point extraction. TrAC – Trends in Analytical Chemistry, v. 24, n. 5, p. 426–436, 2005d.
[5] ZANA, R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants. Journal of Colloid and Interface Science, v. 246, n. 1, p. 182–190, 2002e.
[6] ZOHRABI, P. et al. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta, v. 160, p. 340–346, 2016f.
[7] ASGHARINEZHAD, A. A.; EBRAHIMZADEH, H. Method for Simultaneous Preconcentration of Acidic, Basic and Amphiprotic Pollutants. 2016g.
[8] LÓPEZ-JIMÉNEZ, F. J.; RUBIO, S.; PÉREZ-BENDITO, D. Single-drop coacervative microextraction of organic compounds prior to liquid chromatography. Theoretical and practical considerations. Journal of Chromatography A, v. 1195, n. 1–2, p. 25–33, 2008h.
[9] JAFARVAND, S.; SHEMIRANI, F. Supramolecular-based dispersive liquid–liquid microextraction in high salt concentrations. Analytical Methods, v. 4, p. 1173, 2012i.
[10] YANG, Q. et al. Application of vortex-assisted supramolecular solvent liquid-liquid microextraction for trace determination of nitroaniline isomers. International Journal of Environmental Analytical Chemistry, v. 94, n. 8, p. 812–821, 2014j.
[11] MORADI, M. et al. Ultrasound-assisted liquid-phase microextraction based on a nanostructured supramolecular solvent. Analytical and Bioanalytical Chemistry, v. 405, n. 12, p. 4235–4243, 2013k.
[12] ASIABI, H.; YAMINI, Y.; MORADI, M. Determination of sulfonylurea herbicides in soil samples via supercritical fluid extraction followed by nanostructured supramolecular solvent microextraction. Journal of Supercritical Fluids, v. 84, p. 20–28, 2013.
[13] BALLESTEROS-GÓMEZ, A.; RUBIO, S.; PÉREZ-BENDITO, D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods. Journal of Chromatography A, v. 1216, n. 3, p. 530–539, 2009m.
[14] HADJMOHAMMADI, M. R.; FATEMI, M. H.; TANEH, T. Coacervative extraction of phthalates from water and their determination by high performance liquid chromatography. Journal of the Iranian Chemical Society, v. 8, n. 1, p. 100–106, 2012n.
[15] GARCÍA-FONSECA, S. et al. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination. Journal of Chromatography A, v. 1217, n. 16, p. 2376–2382, 2010o.
[16] HE, WENLIANG; HU, XUJIA; LI, ZONGHAO; CHEN, X. L. M. Vortex-Shaking-Assisted and Supramolecular Solvent-Based Microextraction Followed by HPLC-FLD Determination of Benzo ( a ) pyrene in Water Samples. v. 25, n. 16, p. 9216–9220, 2013p.
[17] CABALLO, C.; SICILIA, M. D.; RUBIO, S. Fast, simple and efficient supramolecular solvent-based microextraction of mecoprop and dichlorprop in soils prior to their enantioselective determination by liquid chromatography-tandem mass spectrometry. Talanta, v. 119, p. 46–52, 2014q.
[18] JIN, X.; ZHU, M.; CONTE, E. D. Surfactant-Mediated Extraction Technique Using Alkyltrimethylammonium Surfactants: Extraction of Selected Chlorophenols from River Water. Analytical Chemistry, v. 71, n. 2, p. 514–517, 1999r.
[19] CASERO, I. et al. An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds. Analytical Chemistry, v. 71, n. 20, p. 4519–4526, 1999s.
[20] YAO, B.; YANG, L. Equilibrium partition of polycyclic aromatic hydrocarbons in cloud point extraction with a silicone surfactant. Journal of Colloid and Interface Science, v. 319, n. 1, p. 316–321, 2008t.
[21] FARAJZADEH, M. A.; FALLAHI, M. R. Simultaneous cloud-point extraction of nine cations from water samples and their determination by flame atomic absorption spectrometry. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, v. 22, n. 4, p. 635–639, 2006u.
[22] TAECHANGAM, P. et al. Effect of nonionic surfactant molecular structure on cloud point extraction of phenol from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 347, n. 1, p. 200–209, 2009v.
[23] LI, J.-L.; CHEN, B.-H. Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process. Journal of colloid and interface science, v. 263, n. 2, p. 625–632, 2003w.
[24] MANZOORI, J. L.; ABDOLMOHAMMAD-ZADEH, H.; AMJADI, M. Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology. Journal of hazardous materials, v. 144, n. 1, p. 458–463, 2007x.
[25] RUIZ, F.-J.; RUBIO, S.; PÉREZ-BENDITO, D. Water-Induced Coacervation of Alkyl Carboxylic Acid Reverse Micelles: Phenomenon Description and Potential for the Extraction of Organic Compounds. Analytical Chemistry, v. 79, n. 19, p. 7473–7484, 2007y.
[26] RUIZ, F.-J.; RUBIO, S.; PÉREZ-BENDITO, D. Tetrabutylammonium-Induced Coacervation in Vesicular Solutions of Alkyl Carboxylic Acids for the Extraction of Organic Compounds. Analytical Chemistry, v. 78, n. 20, p. 7229–7239, 2006z.
[27] WATANABE, H.; MITTAL, K. L.; FENDLER, E. J. Solution behavior of surfactants. [s.l: s.n.]. v. 2
[28] MORADI, M. et al. Development of a new and environment friendly hollow fiber-supported liquid phase microextraction using vesicular aggregate-based supramolecular solvent. Analyst, v. 137, n. 15, p. 3549–3557, 2012ab.
[29] REZAEI, F. et al. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Analytica Chimica Acta, v. 804, p. 135–142, 2013ac.
[30] JEANNOT, M. A.; PRZYJAZNY, A.; KOKOSA, J. M. Single drop microextraction-Development, applications and future trends. Journal of Chromatography A, v. 1217, n. 16, p. 2326–2336, 2010ad.
[31] HE, Y.; KANG, Y. J. Single drop liquid-liquid-liquid microextraction of methamphetamine and amphetamine in urine. Journal of Chromatography A, v. 1133, n. 1–2, p. 35–40, 2006ae.
[32] LIU, Q. et al. Ionic liquid for single-drop microextraction followed by high-performance liquid chromatography-ultraviolet detection to determine carbonyl compounds in environmental waters. Journal of Separation Science, v. 33, n. 15, p. 2376–2382, 2010af.
[33] ZHAO, L.; ZHU, L.; LEE, H. K. A nalysis of aromatic amines in water samples by liquid – liquid – liquid microextraction with hollow fibers and high-performance liquid chromatography. v. 963, p. 239–248, 2002ag.
[34] GJELSTAD, A. et al. Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction. Analytica Chimica Acta, v. 742, p. 10–16, 2012ah.
[35] MAGIERA, S.; NIEŚCIOR, A.; BARANOWSKA, I. Quick Supramolecular Solvent-Based Microextraction Combined with Ultra-High Performance Liquid Chromatography for the Analysis of Isoflavones in Soy Foods. Food Analytical Methods, v. 9, n. 6, p. 1770–1780, 2016ai.
[36] FERDOWSI, M. et al. Application of a nanostructured supramolecular solvent for the microextraction of diphenylamine and its mono-Nitrated derivatives from unburned single-Base propellants. Journal of Separation Science, v. 38, n. 2, p. 276–282, 2015aj.
[37] REZAEI, F. et al. Supercritical fluid extraction followed by nanostructured supramolecular solvent extraction for extraction of levonorgestrel and megestrol from whole blood samples. Journal of Supercritical Fluids, v. 107, p. 392–399, 2016ak.
[38] MORADI, M. et al. Microextraction of methyl and ethyl centralites using an alkanol-based nanostructured solvent followed by high-performance liquid chromatography. Journal of the Iranian Chemical Society, v. 12, n. 9, p. 1595–1601, 2015al.
[39] PEYROVI, M.; HADJMOHAMMADI, M. Supramolecular solvent based microextraction of warfarim from biological samples and its determination using HPLC. Journal of Iranian chemical Society, v. 12, n. 7, p. 1253–1259, 2015am.
[40] CABALLO, C.; SICILIA, M. D.; RUBIO, S. Enantioselective analysis of non-steroidal anti-inflammatory drugs in freshwater fish based on microextraction with a supramolecular liquid and chiral liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, v. 407, n. 16, p. 4721–4731, 2015an.
[41] SHAMSIPUR, M.; ZOHRABI, P.; HASHEMI, M. Application of a supramolecular solvent as the carrier for ferrofluid based liquid-phase microextraction for spectrofluorimetric determination of levofloxacin in biological samples. Analytical Methods, v. 7, n. 22, 2015ao.
[42] REZAEI, F. et al. Determination of diphenylamine residue in fruit samples by supercritical fluid extraction followed by vesicular based-supramolecular solvent microextraction. Journal of Supercritical Fluids, v. 100, p. 79–85, 2015ap.
[43] CABALLERO-CASERO, N. et al. Nanostructured alkyl carboxylic acid-based restricted access solvents: Application to the combined microextraction and cleanup of polycyclic aromatic hydrocarbons in mosses. Analytica Chimica Acta, v. 890, p. 124–133, 2015aq.
[44] ALABI, A.; CABALLERO-CASERO, N.; RUBIO, S. Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection. Journal of Chromatography A, v. 1336, p. 23–33, 2014ar.
[45] REZAEI, F.; YAMINI, Y.; MORADI, M. A comparison between emulsification of reverse micelle-based supramolecular solvent and solidification of vesicle-based supramolecular solvent for the microextraction of triazines. Journal of Chromatography A, v. 1327, p. 155–159, 2014as.
[46] CABALLERO-CASERO, N. et al. Quick supramolecular solvent-based microextraction for quantification of low curcuminoid content in food Microextraction Techniques. Analytical and Bioanalytical Chemistry, v. 406, n. 8, p. 2179–2187, 2014at.
[47] LÓPEZ-JIMÉNEZ, F. J.; BALLESTEROS-GÓMEZ, A.; RUBIO, S. Determination of polycyclic aromatic hydrocarbons (PAH4) in food by vesicular supramolecular solvent-based microextraction and LC-fluo-rescence detection. Food Chemistry, v. 143, p. 341–347, 2014au.
[48] POURGHAZI, K.; AMOLI-DIVA, M. Magnetic nanoparticles solid phase extraction based on the formation of supramolecular mixed hemimicelle aggregates for the determination of naproxen in biological fluids using high-performance liquid chromatography-UV. Micro & Nano Letters, v. 9, n. 9, p. 577–581, 2014av.
[49] YANG, Q.; CHEN, X.; JIANG, X. Liquid–Liquid Microextraction of Nitrophenols Using Supramolecular Solvent and Their Determination by HPLC with UV Detection. Chromatographia, v. 76, n. 23–24, p. 1641–1647, 2013aw.
[50] QIN, H. et al. Supramolecular solvent-based vortex-mixed microextraction: Determination of glucocorticoids in water samples. Journal of Chromatography A, v. 1311, p. 11–20, 2013ax.
[51] LI, Y. et al. Determination of bisphenol-A, 2,4-dichlorophenol, bisphenol-AF and tetrabromobisphenol-A in liquid foods and their packaging materials by vortex-assisted supramolecular solvent microextraction/high-performance liquid chromatography. Analytical Methods, v. 5, n. 19, p. 5037, 2013ay.
[52] LÓPEZ-JIMÉNEZ, F. J.; ROSALES-MARCANO, M.; RUBIO, S. Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, v. 1303, p. 1–8, 2013az.
[53] LARA, A. B. et al. Enantiomer-specific determination of hexabromocyclododecane in fish by supramolecular solvent-based single-step sample treatment and liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, v. 752, p. 62–68, 2012ba.
[54] CABALLERO-CASERO, N.; GARCÍA-FONSECA, S.; RUBIO, S. Vesicular aggregate-based solventless microextraction of Ochratoxin A in dried vine fruits prior to liquid chromatography and fluorescence detection. Talanta, v. 89, p. 377–382, 2012bb.
[55] CARDEÑOSA, V.; LUNAR, M. L.; RUBIO, S. Generalized and rapid supramolecular solvent-based sample treatment for the determination of annatto in food. Journal of Chromatography A, v. 1218, n. 50, p. 8996–9002, 2011bc.
[56] COSTI, E. M.; SICILIA, M. D.; RUBIO, S. Multiresidue analysis of sulfonamides in meat by supramolecular solvent microextraction, liquid chromatography and fluorescence detection and method validation according to the 2002/657/EC decision. Journal of Chromatography A, v. 1217, n. 40, p. 6250–6257, 2010bd.
[57] COSTI, E. M.; SICILIA, M. D.; RUBIO, S. Supramolecular solvents in solid sample microextractions: Application to the determination of residues of oxolinic acid and flumequine in fish and shellfish. Journal of Chromatography A, v. 1217, n. 9, p. 1447–1454, 2010be.
[58] MORAL, A.; SICILIA, M. D.; RUBIO, S. Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection. Analytica Chimica Acta, v. 650, n. 2, p. 207–213, 2009bf.
[59] FEIZI, N. et al. Nano-structured gemini-based supramolecular solvent for the microextraction of cyhalothrin and fenvalerate. Journal of Separation Science, 2016bg.
[60] EZODDIN, M.; ABDI, K. Monitoring of antifungal drugs in biological samples using ultrasonic-assisted supramolecular dispersive liquid-liquid microextraction based on solidification of a floating organic droplet. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, v. 1027, p. 74–80, 2016bh.
[61] YIGIT, S. et al. Supramolecular solvent microextraction of Sudan blue II in environmental samples prior to its spectrophotometric determination. International Journal of Environmental Analytical Chemistry, v. 96, n. 6, p. 568–575, 2016bi.
[62] SAFARI, M. et al. Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchimica Acta, v. 183, n. 1, p. 203–210, 2016bj.
[63] PEYROVI, M.; HADJMOHAMMADI, M. Extraction optimization of Loratadine by supramolecular solvent-based microextraction and its determination using HPLC. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, v. 980, p. 41–47, 2015bk.
[64] BENEDÉ, J. L. et al. In-situ suspended aggregate microextraction: A sample preparationapproach for the enrichment of organic compounds in aqueoussolutions. Journal of Chromatography A, v. 1408, p. 63–71, 2015bl.
[65] EBRAHIMPOUR, B. et al. Nanostructured solvent based microextraction followed by a novel strategy for online phase separation coupled with HPLC for determination of ethinyl estradiol. Analytical Methods, v. 6, n. 9, p. 2936, 2014bm.
[66] CABALLO, C.; SICILIA, M. D.; RUBIO, S. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry. Talanta, v. 134, p. 325–332, 2014bn.
[67] CABALLO, C.; SICILIA, M. D.; RUBIO, S. Stereoselective quantitation of mecoprop and dichlorprop in natural waters by supramolecular solvent-based microextraction, chiral liquid chromatography and tandem mass spectrometry. Analytica Chimica Acta, v. 761, p. 102–108, 2013bo.
[68] REZAEI, F. et al. Solid phase extraction as a cleanup step before microextraction of diclofenac and mefenamic acid using nanostructured solvent. Talanta, v. 105, p. 173–178, 2013bp.
[69] CABALLO, C. et al. Determination of supplemental feeding needs for astaxanthin and canthaxanthin in salmonids by supramolecular solvent-based microextraction and liquid chromatography-UV/VIS spectroscopy. Food Chemistry, v. 134, n. 2, p. 1244–1249, 2012bq.
[70] TAYYEBI, M.; YAMINI, Y.; MORADI, M. Reverse micelle-mediated dispersive liquid-liquid microextraction of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid. Journal of Separation Science, v. 35, n. 18, p. 2491–2498, 2012br.
[71] LUQUE, N. et al. A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation. Journal of Chromatography A, v. 1235, p. 84–91, 2012bs.
[72] MORADI, M.; YAMINI, Y. Application of vesicular coacervate phase for microextraction based on solidification of floating drop. Journal of Chromatography A, v. 1229, p. 30–37, 2012bt.
[73] MORAL, A. et al. Highly efficient microextraction of chlorophenoxy acid herbicides in natural waters using a decanoic acid-based nanostructured solvent prior to their quantitation by liquid chromatography-mass spectrometry. Analytica Chimica Acta, v. 709, p. 59–65, 2012bu.
[74] JAFARVAND, S.; SHEMIRANI, F. Supramolecular-based dispersive liquid-liquid microextraction: A novel sample preparation technique utilizes coacervates and reverse micelles. Journal of Separation Science, v. 34, n. 4, p. 455–461, 2011bv.
[75] LÓPEZ-JIMÉNEZ, F. J.; RUBIO, S.; PÉREZ-BENDITO, D. Supramolecular solvent-based microextraction of Sudan dyes in chilli-containing foodstuffs prior to their liquid chromatography-photodiode array determination. Food Chemistry, v. 121, n. 3, p. 763–769, 2010bw.