Recent advances in the minaturization of columns for liquid chromatography

Leal, Vivane Lopes; Silva, Meire Ribeiro da; Lanças, Fernando Mauro

Palavras-chave: Micropacked columns; monolithic columns; open tubular LC columns, capillary LC; micro chip based columns.

Resumo: In chromatography, instrumental advances and column technology have conducted to faster analysis with a notable increase in the separation power. Besides that, the miniaturization has gained prominence and proving to be a trend in recent years. In the case of miniaturized liquid chromatography the advantages are concentrated in the lower consumption of sample, sorbent and mobile phase as well as the lower flow rate of the reduced column dimensions that increase the sensitivity of detectors that are sensitive to concentration owing to the lower dilution. In this context, there is a decrease on the column inner diameter, which requires special conditions to obtain columns with high efficiency. As a consequence, different types of miniaturized columns as micro-packed, as monolithic, open tubular and columns prepared in chips are potentials to be exploited in liquid chromatography on either micro or nano scales. These columns will be described and evaluated in this review.

Referências Bibliográficas

[1] Y. Saito, K. Jinno, T. Greibrokk, Capillary columns in liquid chromatography: Between conventional columns and microchips, J. Sep. Sci. 27 (2004). doi:10.1002/jssc.200401902.
[2] K. Hibi, D. Ishii, I. Fujishima, T. Takeuchi, T. Nakanishi, Studies of open tubular micro capillary liquid chromatography. 1. The development of open tubular micro capillary liquid chromatography, J. High Resolut. Chromatogr. 1 (1978) 21–27. doi:10.1002/jhrc.1240010106.
[3] S. Fanali, An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography, Electrophoresis. (2017). doi:10.1002/elps.201600573.
[4] C.E.D. Nazario, M.R. Silva, M.S. Franco, F.M. Lanças, Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview, J. Chromatogr. A. 1421 (2015). doi:10.1016/j.chroma.2015.08.051.
[5] C.E.D. Nazario, B.H. Fumes, M.R. da Silva, F.M. Lanças, New materials for sample preparation techniques in bioanalysis, J. Chromatogr. B. (2016). doi:10.1016/j.jchromb.2016.10.041.
[6] F.M. Lanças, J.C. Rodrigues, S. deS. Freitas, Preparation and use of packed capillary columns in chromatographic and related techniques, J. Sep. Sci. 27 (2004). doi:10.1002/jssc.200401853.
[7] J.J. Kirkland, S.A. Schuster, W.L. Johnson, B.E. Boyes, Fused-core particle technology in high-performance liquid chromatography: An overview, J. Pharm. Anal. 3 (2013) 303–312. doi:10.1016/j.jpha.2013.02.005.
[8] C. Fanali, A. Rocco, Z. Aturki, L. Mondello, S. Fanali, Analysis of polyphenols and methylxantines in tea samples by means of nano-liquid chromatography utilizing capillary columns packed with core–shell particles, J. Chromatogr. A. 1234 (2012) 38–44. doi:10.1016/j.chroma.2011.12.103.
[9] M.R. da Silva, B.H. Fumes, C.E.D. Nazario, F.M. Lancas, New Materials for Green Sample Preparation: Recent Advances and Future Trends, 2017. doi:10.1016/bs.coac.2017.03.003.
[10] B.H. Fumes, M.R. Silva, F.N. Andrade, C.E.D. Nazario, F.M. Lanças, Recent advances and future trends in new materials for sample preparation, TrAC – Trends Anal. Chem. 71 (2015). doi:10.1016/j.trac.2015.04.011.
[11] J.C. Rodrigues, F.M. Lanças, Preparation of packed capillary columns using supercritical carbon dioxide on cyclone-type slurry reservoir, J. Chromatogr. A. 1090 (2005). doi:10.1016/j.chroma.2005.06.074.
[12] R.D. Arrua, T.J. Causon, E.F. Hilder, Recent developments and future possibilities for polymer monoliths in separation science, Analyst. 137 (2012) 5179. doi:10.1039/c2an35804b.
[13] F. Svec, Preparation and HPLC applications of rigid macroporous organic polymer monoliths, J. Sep. Sci. 27 (2004). doi:10.1002/jssc.200401721.
[14] A. Vaast, H. Terryn, F. Svec, S. Eeltink, Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides, J. Chromatogr. A. 1374 (2014) 171–179. doi:10.1016/j.chroma.2014.11.063.
[15] F. Svec, C.G. Huber, Monolithic Materials: Promises, Challenges, Achievements, Anal. Chem. 78 (2006) 2100–2107. doi:10.1021/ac069383v.
[16] A. Ghanem, T. Ikegami, N. Tanaka, New silica monolith bonded chiral (R)-γ butyrolactone for enantioselective micro high-performance liquid chromatography., Chirality. 23 (2011) 887–90. doi:10.1002/chir.21004.
[17] I. Nischang, O. Brüggemann, On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths., J. Chromatogr. A. 1217 (2010) 5389–97. doi:10.1016/j.chroma.2010.06.021.
[18] H. Zhao, Y. Wang, H. Cheng, Y. Shen, Graphene oxide decorated monolithic column as stationary phase for capillary electrochromatography, J. Chromatogr. A. 1452 (2016) 27–35. doi:10.1016/j.chroma.2016.05.001.
[19] F. Svec, Organic polymer monoliths as stationary phases for capillary HPLC, J. Sep. Sci. 27 (2004) 1419–1430. doi:10.1002/jssc.200401825.
[20] C. Aydoan, A new anion-exchange/hydrophobic monolith as stationary phase for nano liquid chromatography of small organic molecules and inorganic anions, J. Chromatogr. A. 1392 (2015) 63–68. doi:10.1016/j.chroma.2015.03.014.
[21] A. Ghanem, F.G. Adly, Y. Sokerik, N.Y. Antwi, M.A. Shenashen, S.A. El-Safty, Trimethyl-β-cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application, Talanta. 169 (2017). doi:10.1016/j.talanta.2016.06.027.
[22] S. Liu, J. Peng, H. Zhang, X. Li, Z. Liu, X. Kang, et al., Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography, J. Chromatogr. A. 1498 (2017). doi:10.1016/j.chroma.2017.03.067.
[23] M.R. Silva, F.N. Andrade, B.H. Fumes, F.M. Lanças, Unified chromatography: Fundamentals, instrumentation and applications†, J. Sep. Sci. 38 (2015) 3071–3083. doi:10.1002/jssc.201500130.
[24] W.M.A. Niessen, H.P.M. van Vliet, H. Poppe, Studies on external peak broadening in open-tubular liquid chromatography systems using the exponentially modified Gaussian model, Chromatographia. 20 (1985) 357–363. doi:10.1007/BF02269062.
[25] D. Ishii, T. Tsuda, T. Takeuchi, Studies of open-tubular micro-capillary liquid chromatography. IV. Soda-lime glass columns treated with alkaline solution, J. Chromatogr. A. 185 (1979). doi:10.1016/S0021-9673(00)85598-3.
[26] S. Forster, H. Kolmar, S. Altmaier, Performance evaluation of thick film open tubular silica capillary by reversed phase liquid chromatography, J. Chromatogr. A. 1283 (2013). doi:10.1016/j.chroma.2013.01.107.
[27] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules., Science. 246 (1989) 64–71.
[28] G. Yue, Q. Luo, J. Zhang, S.-L. Wu, B.L. Karger, Ultratrace LC/MS Proteomic Analysis Using 10-μm-i.d. Porous Layer Open Tubular Poly(styrene−divinylbenzene) Capillary Columns, Anal. Chem. 79 (2007) 938–946. doi:10.1021/ac061411m.
[29] M. Rogeberg, T. Vehus, L. Grutle, T. Greibrokk, S.R. Wilson, E. Lundanes, Separation optimization of long porous-layer open-tubular columns for nano-LC-MS of limited proteomic samples, J. Sep. Sci. 36 (2013) 2838–2847. doi:10.1002/jssc.201300499.
[30] S.R. Wilson, T. Vehus, H.S. Berg, E. Lundanes, Nano-LC in proteomics: recent advances and approaches, Bioanalysis. 7 (2015) 1799–1815. doi:10.4155/bio.15.92.
[31] M. Rogeberg, S.R. Wilson, T. Greibrokk, E. Lundanes, Separation of intact proteins on porous layer open tubular (PLOT) columns, J. Chromatogr. A. 1217 (2010) 2782–2786. doi:10.1016/j.chroma.2010.02.025.
[32] M. Rogeberg, H. Malerod, H. Roberg-Larsen, C. Aass, S.R. Wilson, On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems, J. Pharm. Biomed. Anal. 87 (2014) 120–129. doi:10.1016/j.jpba.2013.05.006.
[33] H.K. Hustoft, T. Vehus, O.K. Brandtzaeg, S. Krauss, T. Greibrokk, S.R. Wilson, et al., Open Tubular Lab-On-Column / Mass Spectrometry for Targeted Proteomics of Nanogram Sample Amounts, 9 (2014) 1–10. doi:10.1371/journal.pone.0106881.
[34] Q. Luo, Y. Gu, S.-L. Wu, T. Rejtar, B.L. Karger, Two-dimensional strong cation exchange/porous layer open tubular/mass spectrometry for ultratrace proteomic analysis using a 10 μm id poly(styrene- divinylbenzene) porous layer open tubular column with an on-line triphasic trapping column, Electrophoresis. 29 (2008) 1604–1611. doi:10.1002/elps.200700741.
[35] T. Vehus, H. Roberg-Larsen, J. Waaler, S. Aslaksen, S. Krauss, S.R. Wilson, et al., Versatile, sensitive liquid chromatography mass spectrometry – Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins, Sci. Rep. 6 (2016) 37507. doi:10.1038/srep37507.
[36] Q. Luo, G. Yue, G.A. Valaskovic, Y. Gu, S. Wu, B.L. Karger, On-Line 1D and 2D Porous Layer Open Tubular / LC-ESI-MS Using 10- μ m-i. d. Poly ( styrene – divinylbenzene ) Columns for Ultrasensitive Proteomic Analysis, Anal Chim Acta. (2007) 6549–6556.
[37] Q. Luo, T. Rejtar, S.-L. Wu, B.L. Karger, Hydrophilic interaction 10 μm I.D. porous layer open tubular columns for ultratrace glycan analysis by liquid chromatography-mass spectrometry, J. Chromatogr. A. 1216 (2009). doi:10.1016/j.chroma.2008.09.105.
[38] S. Forster, H. Kolmar, S. Altmaier, Preparation and kinetic performance assessment of thick film 10-20??m open tubular silica capillaries in normal phase high pressure liquid chromatography, J. Chromatogr. A. 1315 (2013) 127–134. doi:10.1016/j.chroma.2013.09.059.
[39] S. Forster, H. Kolmar, S. Altmaier, Synthesis and characterization of new generation open tubular silica capillaries for liquid chromatography, J. Chromatogr. A. 1265 (2012) 88–94. doi:10.1016/j.chroma.2012.09.054.
[40] J.P. Kutter, Liquid phase chromatography on microchips, J. Chromatogr. A. 1221 (2012) 72–82. doi:10.1016/j.chroma.2011.10.044.
[41] S. Jung, A. Höltzel, S. Ehlert, J.-A. Mora, K. Kraiczek, M. Dittmann, et al., Impact of Conduit Geometry on the Performance of Typical Particulate Microchip Packings, Anal. Chem. 81 (2009) 10193–10200. doi:10.1021/ac902069x.
[42] M. Kato, M. Inaba, T. Tsukahara, K. Mawatari, A. Hibara, T. Kitamori, Femto Liquid Chromatography with Attoliter Sample Separation in the Extended Nanospace Channel, Anal. Chem. 82 (2010) 543–547. doi:10.1021/ac9017605.
[43] L. SAINIEMI, T. NISSILA, V. JOKINEN, T. SIKANEN, T. KOTIAHO, R. KOSTIAINEN, et al., Fabrication and fluidic characterization of silicon micropillar array electrospray ionization chip, Sensors Actuators B Chem. 132 (2008) 380–387. doi:10.1016/j.snb.2007.09.077.
[44] P. Srinivas, P.M. Krishna, M. Sadanandam, Nano liquid chromatography in pharmaceutical analysis-A review, Int. J. Pharm. Sci. 2 (2010).
[45] L. Magrini, G. Famiglini, P. Palma, V. Termopoli, A. Cappiello, Boosting the Detection Potential of Liquid Chromatography-Electron Ionization Mass Spectrometry Using a Ceramic Coated Ion Source, J. Am. Soc. Mass Spectrom. 27 (2016) 153–160. doi:10.1007/s13361-015-1257-0.
[46] P. Palma, G. Famiglini, H. Trufelli, E. Pierini, V. Termopoli, A. Cappiello, Electron ionization in LC-MS: recent developments and applications of the direct-EI LC-MS interface, Anal. Bioanal. Chem. 399 (2011) 2683–2693. doi:10.1007/s00216-010-4637-0.
[47] A. Cappiello, F. Bruner, Micro flow rate particle beam interface for capillary liquid chromatography/mass spectrometry, Anal. Chem. 65 (1993) 1281–1287. doi:10.1021/ac00057a028.
[48] G. Yue, Q. Luo, J. Zhang, S. Wu, B.L. Karger, Ultratrace LC/MS Proteomic Analysis Using 10-μm-i.d. Porous Layer Open Tubular Poly(styrene−divinylbenzene) Capillary Columns, Anal. Chem. 79 (2007) 938–946. doi:10.1021/ac061411m.
[49] T. Hetzel, C. vom Eyser, J. Tuerk, T. Teutenberg, T.C. Schmidt, Micro-liquid chromatography mass spectrometry for the analysis of antineoplastic drugs from wipe samples, Anal. Bioanal. Chem. 408 (2016) 8221–8229. doi:10.1007/s00216-016-9932-y.
[50] S. Hickert, J. Gerding, E. Ncube, F. Hübner, B. Flett, B. Cramer, et al., A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples, Mycotoxin Res. 31 (2015). doi:10.1007/s12550-015-0221-y.