Open tubular columns internally coated with a porous layer (PLOT) in miniaturized liquid chromatographyda

Lanças FM et al..

Keywords: Miniaturized Liquid Chromatography, OT-PLOT-LC, PLOT-LC(ESI)MS E PLOT-LC(EI)-MS.

Abstract: Liquid chromatography is evolving to miniaturization in order to achieve better levels of efficiency, following the steps of gas chromatography. The main aspect of miniaturization is the reduction of the internal diameter of the analytical columns. The main advantages are the possibility of analyzing samples with small volumes, increased separation efficiency, and lower mobile and stationary phase expenditure, according to the principles of Green Chemistry. Among the miniaturized, the porous layer open tubular column (PLOT) (OT-PLOT-LC) stands out due to their reduced load capacity, higher permeability and separation efficiency. However, for better efficiency there is a restriction of having internal diameters equal to or less than 10 μm. This feature imposes instrumental limitations, such as the need for a special system for introducing samples and detectors with low-volume detection cells, which are responsible for delaying their commercial diffusion and study. However, the development of equipment capable of operating at a nano scale, with low flow and low mobile phase volume, has become suitable for hyphenation with mass spectrometry, using as an ionization form electron impact or electrospray (PLOT-LC(ESI)-MS and PLOT-LC (EI)-MS). The objective of this work is to report and discuss some of the main points related to the miniaturization of analytical columns in liquid chromatography, with emphasis on open tubular columns of the PLOT type.

Referências Bibliográficas

[1] SAITO, Y. et al. Capillary columns in liquid chromatography: between conventional columns and microchips. Journal Of Separation Science, v.27, n.17-18, p.1379-1390, 2004.
[2] LUO, Q. et al. On-Line 1D and 2D Porous Layer Open Tubular/LC-ESI-MS Using 10-μm-i.d. Poly(styrene−divinylbenzene) Columns for Ultrasensitive Proteomic Analysis. Analytical Chemistry, v.79, n.16, p.6174-6181, 2007.
[3] ROGEBERG, M. et al. Separation optimization of long porous-layer open-tubular columns for nano-LC-MS of limited proteomic samples. Journal Of Separation Science, v.36, n.17, p.2838-2847, 2013.
[4] LI, R. et al. Preparation and Application of Porous Layer Open Tubular Capillary Columns with Narrow Bore in Liquid Chromatography. Chinese Journal Of Analytical Chemistry, v.45, n.12, p.1865-1873, 2017.
[5] KAZARIAN, A. A. et al. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography. Analytica Chimica Acta, v.905, p.1-7, 2016.
[6] COLLINS, C. H. Michael Tswett e o “nascimento” da Cromatografia. Scientia Chromatographica, v.1, n.1, p.7-20, 2009.
[7] LANÇAS, F. M. Cromatografia líquida moderna: HPLC/CLAE. Campinas: Átomo, 2016.
[8] ETTRE, L. The development of gas chromatography. Journal Of Chromatography A, v.112, n.1, p.1-26, 1975.
[9] GOLAY, M. J. E. Vapor Phase Chromatography and Telegrapher’s Equation. Analytical Chemistry, v.29, n.6, p.928-932, 1957.
[10] BLUE, L. E. et al. Recent advances in capillary ultrahigh pressure liquid chromatography. Journal Of Chromatography A, v.1523, n.2, p.17-39, 2017.
[11] LANÇAS, F. M. Vantagens e Limitações da Miniaturização em Cromatografia Líquida. Scientia Chromatographica, São Carlos, v.1, n.3, p.51-60, 2009.
[12] SILVA, R. et al. Cromatografia Líquida Capilar: Estado da Arte e Aplicações. Química Nova, v.34, n.5, p.841-849, 2011.
[13] HORVATH, C. G. et al. Fast liquid chromatography. Investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Analytical Chemistry, v.39, n.12, p.1422-1428, 1967.
[14] SAITO, Y. et al. Capillary columns in liquid chromatography: between conventional columns and microchips. Journal Of Separation Science, v.27, n.17-18, p.1379-1390, 2004.
[15] ISHII, D. et al. A study of micro-high-performance liquid chromatography. Journal Of Chromatography A, v.144, n.2, p.157-168, 1977.
[16] HIBI, K. et al. Studies of open tubular micro capillary liquid chromatography. 1. The development of open tubular micro capillary liquid chromatography. Journal Of High Resolution Chromatography, v.1, n.1, p.21-27, 1978.
[17] SCOTT, R. P. W. et al. Mode of operation and performance characteristics of microbore columns for use in liquid chromatography. Journal Of Chromatography A, v.169, p.51-72, 1979.
[18] SCOTT, R. P. W. et al. Use of microbore columns for rapid liquid chromatographic separations. Journal Of Chromatography A, v.186, p.475-487, 1979.
[19] SCOTT, R. P. W.; KUCERA, P. Use of microbore columns for the separation of substances of biological origin. Journal Of Chromatography A, v.185, p.27-41, 1979.
[20] TSUDA, T.; NOVOTNY, Mi. Packed microcapillary columns in high performance liquid chromatography. Analytical Chemistry, v.50, n.2, p.271-275, 1978.
[21] TSUDA, T.; NOVOTNY, M. Band-broadening phenomena in microcapillary tubes under the conditions of liquid chromatography. Analytical Chemistry, v.50, n.4, p.632-634, 1978.
[22] BRISTOW, P. A.; KNOX, J. H. Standardization of test conditions for high performance liquid chromatography columns. Chromatographia, v.10, n.6, p.279-289, 1977.
[23] DANDENEAU, R. D.; ZERENNER, E. H. An investigation of glasses for capillary chromatography. Journal Of High Resolution Chromatography, v.2, n.6, p.351-356, 1979.
[24] GRIFFIN, G. Fused-silica capillary – the story behind the technology. LCGC North America, v.20, n.10, p.928-938, 2002.
[25] MACNAIR, J. E. et al. Ultrahigh-Pressure Reversed-Phase Liquid Chromatography in Packed Capillary Columns. Analytical Chemistry, v.69, n.6, p.983-989, 1997.
[26] ISHII, D. Introduction to microscale high-performance liquid chromatography. 1 ed. Wiley, 1987.
[27] BARTH, H. G. et al. Column liquid chromatography. Analytical Chemistry, v.60, n.12, p.387-435, 1988.
[28] VERZELE, M.; DEWAELE, C. Liquid chromatography in packed fused silica capillaries or Micro-LC: A repeat of the capillary gas chromatography story?. Journal Of High Resolution Chromatography, v.10, n.5, p.280-287, 1987.
[29] CHERVET, J. P. et al. Instrumental Requirements for Nanoscale Liquid Chromatography. Analytical Chemistry, v.68, n.9, p.1507-1512, 1996.
[30] VISSERS, J. P. C. et al. Microcolumn liquid chromatography: instrumentation, detection and applications. Journal Of Chromatography A, v.779, n.1-2, p.1-28, 1997.
[31] LEAL, V. L. et al. Avanços recentes na miniaturização de colunas para cromatografia líquida. Scientia Chromatographica, v.9, n.2, p.117-133, 2017.
[32] NAZARIO, C. E. D. et al. Miniaturized Column Liquid Chromatography. Nanomaterials In Chromatography, p.359-385, 2018.
[32] NAZARIO, C. E. D. et al. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview. Journal Of Chromatography A, v. 1421, p.18-37, 2015.
[34] FANALI, S. An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography. Electrophoresis, v.38, n.15, p.1822-1829, 2017.
[35] PRETORIUS, V.; SMUTS, T. W. Turbulent Flow Chromatography. A New Approach to Faster Analysis. Analytical Chemistry, v.38, n.2, p.274-281, 1966.
[36] ETTRE L. S., Open tubular columns in gas chromatography: 1 ed. Boston: Springer, 1965.
[37] KNOX, J. H.; GILBERT, M. T. Kinetic optimization of straight open-tubular liquid chromatography. Journal Of Chromatography A, v.186, p.405-418, 1979.
[38] JORGENSON, J. W.; GUTHRIE, E. J. Liquid chromatography in open-tubular columns. Journal Of Chromatography A, v.255, p.335-348, 1983.
[39] COUTINHO, L.; LANÇAS, F. M. Cromatografia Líquida Capilar1. Principais Características da Técnica. Scientia Chromatographica, v.3, n.2, p.115-130, 2011.
[40] COLLINS, D. A. et al. Porous layer open tubular columns in capillary liquid chromatography. The Analyst, v.139, n.6, p.1292-1302, 2014.
[41] FONSECA, J. R. Avaliação dos processos de pré-tratamento da superfície da sílica fundida no preparo de colunas capilares inertes para cromatografia gasosa. 2009. 78 f. Dissertação (Mestrado em Química Analítica) – Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 2009.
[42] GODEFROOT, M. et al. High temperature silylation of glass capillary columns. Journal Of High Resolution Chromatography, v.3, n.7, p.337-344, 1980.
[43] GROB K. Making and manipulating capillary columns for gas chromatography: Heidelberg: Verlagsgruppe, 1986.
[44] GÖHLIN, K.; LARSSON, M. Study of polyorganosiloxanes (native and solvent swollen) for the preparation of narrow (5–15 μm I.D.) and long (1–6 m) open tubular columns in reversed-phase liquid chromatography. Journal Of Chromatography A, v.645, n.1, p.41-56, 1993.
[45] CAUSON, T. J. et al. Kinetic optimisation of open-tubular liquid-chromatography capillaries coated with thick porous layers for increased loadability. Journal Of Chromatography A, v.1218, n.46, p.8388-8393, 2011.
[46] GUIHEN, E.; GLENNON, J. D. Recent highlights in stationary phase design for open-tubular capillary electrochromatography. Journal Of Chromatography A, v.1044, n.1-2, p.67-81, 2004.
[47] YUE, G. et al. Ultratrace LC/MS Proteomic Analysis Using 10-μm-i.d. Porous Layer Open Tubular Poly(styrene−divinylbenzene) Capillary Columns. Analytical Chemistry, v.79, n.3, p.938-946, 2007.
[48] ROGEBERG, M. et al. On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. Journal Of Pharmaceutical And Biomedical Analysis, v.87, p.120-129, 2014.
[49] HUANG, X. et al. Multilayer chitosan-based open tubular capillary anion exchange column with integrated monolithic capillary suppressor. Analytica Chimica Acta, v.707, n.1-2, p.210-217, 2011.
[50] SCHOMBURG, G. et al.  Alkylpolysiloxane Glass Capillary Columns Combining High Temperature Stability of the Stationary Liquid and Deactivation of the Surface. Chromatographia, v.12, n.10, 1979.
[51] BOUCHE, J.; VERZELE, M. A Static Coating Procedure for Glass Capillary Columns. Journal Of Chromatographic Science, v.6, n.10, p.501-505, 1968.
[52] HOFFMANN, E.; STROOBANDT V. Mass spectrometry: Principles and Applications. 3 ed. England: Ed. John Wiley & Sons Ltd, 2007.
[53] DASS C. Fundamentals of contemporany mass spectrometry: New Jersey: John Wiley & Sons, 2007.
[54] LANÇAS, F. M. A cromatografia líquida moderna e a espectrometria de massas: “finalmente compatíveis”?. Scientia Cromatographica, v.1, n.2, p.35-61, 2009.
[55] HOFFMANN, E.; STROOBANDT V. Mass spectrometry: Principles and Applications. 3 ed. England: John Wiley & Sons Ltd, 2007.
[56] CAPPIELLO, A. et al. Is particle beam an up-to-date LC-MS interface? State of the art and perspectives. Mass Spectrometry Reviews, v.15, n.5, p.283-296, 1996.
[57] JOHNS, C. et al. Design and performance of a light-emitting diode detector compatible with a commercial capillary electrophoresis instrument. Electrophoresis, v.25, n.1819, p.3145-3152, 2004.
[58] RYVOLOVÁ, M. et al. Combined Contactless Conductometric, Photometric, and Fluorimetric Single Point Detector for Capillary Separation Methods. Analytical Chemistry, v.82, n.1, p.129-135, 2010.
[59] SILVA, M. R. et al. An automated and self-cleaning nano liquid chromatography mass spectrometry platform featuring an open tubular multi-hole crystal fiber solid phase extraction column and an open tubular separation column. Journal Of Chromatography A, v.1518, n.15, p.104-110, 2017.
[60] ROGEBERG, M. et al. Separation of intact proteins on porous layer open tubular (PLOT) columns. Journal Of Chromatography A, v.1217, n.17, p.2782-2786, 2010.
[61] VEHUS T. et al. Versatile, sensitive liquid chromatography mass spectrometry – Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins. Scientific Reports, v.6, p.37507, 2016.
[62] WANG, H. et al. Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC-MS/MS analysis of tryptic digest. Analytica Chimica Acta, v.979, p.58-65, 2017.