http://dx.doi.org/10.4322/sc.2015.014

Electrokinetic chromatography: an historical review of developments in theory and practice

Varejão, Jorge M. T. B.; Costa, M. Conceição Cruz

Palavras-chave: Electrokinetic Chromatography, Pseudostationary phase, Mass Spectrometric Detection, Analyte Focusing, Selectivity, Band Broadening.

Resumo: During three decades since the introduction of electrokinetic chromatography (EKC), a large number of research and development efforts have defined the technique and demonstrated numerous applications. Theory has been developed and the fundamental factors affecting performance have been characterized, allowing rational method development and optimization. Numerous materials have been introduced for use as pseudostatonary phases, and their separation performance and selectivity characterized. EKC has been applied to numerous analytical problems, and also to characterize both analytes and pseudostationary phase materials. Although it was originally thought to be an insurmountable challenge, EKC has been combined with mass spectrometry to provide selective, qualitative and sensitive detection. EKC has also been demonstrated to be effective for online analyte focusing using various approaches, thus helping to overcome the low concentration sensitivity of the technique. This review provides introduction to EKC for the novice, and highlights important fundamental, theoretical and practical developments in the field.


Referências Bibliográficas

1. Terabe, S., Otsuka, K., Ichikawa, A., Tsuchiya, A., Ando, T., “Electrokinetic Separations with Micellar Solutions in OpenTubular Capillaries,” Anal. Chem. 1984, 56, 111-113.
2. Pyell, U. (Ed.), Electrokinetic Chromatography. Theory, Instrumentation and Applications, John Wiley and Sons Ltd., West Sussex, England 2006.
3. Deeb, S. E., Dawwas, H. A., Gust, R., “Recent methodological and instrumental development in MEKC,” Electrophoresis 2013, 34, 1295-1303.
4. Silva, M., “Micellar electrokinetic chromatography: A review of methodological and instrumental innovations focusing on practical aspects,” Electrophoresis 2013, 34, 141-158.
5. Bushey, M. M., Jorgenson, J. W., “Separation of dansylated methylamine and dansylated methyl-d3-amine by micellar electrokinetic capillary chromatography with methanol-modified mobile phase,” Anal. Chem. 1989, 61, 491-493.
6. Terabe, S., Otsuka, K., Ando, T., “Electrokinetic Chromatography with Micellar Solution and Open-Tubular Capillary,” Anal. Chem. 1985, 57, 834-841.
7. Yu, L., Davis, J. M., “Study of high-field dispersion in micellar electrokinetic chromatography,” Electrophoresis 1995, 16, 21042120.
8. Davis, J. M., “New assessments of dispersion in micellar electrokinetic chromatography,” J. Microcol. Sep. 1998, 10, 479-489.
9. Yu, L., Seals, T., Davis, J. M., “Reexamination of Dependence of Plate Number on SDS Concentration in Micellar Electrokinetic Chromatography,” Anal. Chem. 1996, 68, 4270-4280.
10. Davis, J. M., “Dispersion in micellar electrokinetic chromatography,” Adv.Chromatogr. 2000, 40, 115-157.
11. Smith, K. W., Davis, J. M., “Quantitative Study of Concentration Overload, Peak Asymmetry, and Efficiency Loss in Micellar Electrokinetic Chromatography,” Anal. Chem. 2002, 74, 5969-5981.
12. Williamson, Y., Davis, J. M., “Modeling of anti-Langmuirian peaks in micellar electrokinetic chromatography: Benzene and naphthalene,” Electrophoresis 2005, 26, 4026-4042.
13. Williamson, Y., Davis, J. M., “Origin of peak asymmetry and isotherm nonlinearity in micellar electrokinetic chromatography: variation of peak shape with buffer concentration,” Electrophoresis 2006, 27, 572-583.
14. Liu, S., Davis, J. M., “Comparison of micellar isotherms of benzene determined by headspace gas chromatography and micellar electrokinetic chromatography. Assessment on impact of buffer and solubilization-induced conductivity change,” J. Chromatogr. A 2007, 1147, 111-119.
15. Nishi, H., Fukuyama, T., Matsuo, M., Terabe, S., “Effect of surfactant structures on the separation of cold medicine ingredients by micellar electrokinetic chromatography,” J. Pharm. Sci. 1990, 79, 519-523.
16. Nishi, H., Fukuyama, T., Matsuo, M., Terabe, S., “Separation and determination of the ingredients of a cold medicine by micellar electrokinetic chromatography with bile salts,” J. Chromatogr. A 1990, 498, 313-323.
17. Trone, M. D., Khaledi, M. G., “Characterization of chemical selectivity in micellar electrokinetic chromatography: V. The effect of the surfactant hydrophobic chain,” J. Microcolumn Sep. 2000, 12, 433-441.
18. Trone, M. D., Khaledi, M. G., “Influence of ester and amide-containing surfactant headgroups on selectivity in micellar electrokinetic chromatography,” Electrophoresis 2000, 21, 2390-2396.
19. Trone, M. D., Mack, J. P., Goodell, H. P., Khaledi, M. G., “Characterization of chemical selectivity in micellar electrokinetic chromatography. VI. Effects of surfactant counter-ion,” J. Chromatogr. A 2000, 888, 229-240.
20. Schnee, V. P., Baker, G. A., Rauk, E., Palmer, C. P., “Electrokinetic chromatographic characterization of novel pseudo-phases based on N-alkyl-N-methylpyrrolidinium ionic liquid type surfactants,” Electrophoresis 2006, 27, 4141-4148.
21. Schnee, V. P., Palmer, C. P., “Cationic surfactants for micellar electrokinetic chromatography: 2. Representative applications to acidic, basic, and hydrophobic analytes,” Electrophoresis 2008, 29, 777-782.
22. Schnee, V. P., Palmer, C. P., “Cationic surfactants for micellar electrokinetic chromatography: 1. Characterization of selectivity using the linear solvation energy relationships model,” Electrophoresis 2008, 29, 767-776.
23. Schnee, V. P., Palmer, C. P., “Characterization of a cationic phosphonium surfactant for micellar electrokinetic chromatography: using the linear solvation energy relationships model,” Electrophoresis 2008, 29, 761-766.
24. Crosby, D., Elrassi, Z., “Micellar Electrokinetic Capillary Chromatography With Cationic Surfactants,” J. Liq. Chromatogr. 1993, 16, 2161-2187.
25. Rasmussen, H. T., Goebel, L. K., McNair, H. M., “Micellar electrokinetic chromatography employing sodium alkyl sulfates and Brij 35®,” J. Chromatogr. A 1990, 517, 549-555.
26. Bumgarner, J. G., Khaledi, M. G., “Mixed micellar electrokinetic chromatography of corticosteroids,” Electrophoresis 1994, 15, 1260-1266.
27. Ong, C. P., Ng, C. L., Lee, H. K., Li, S. F. Y., “The Use of Mixed Surfactants in Micellar Electrokinetic Chromatography,” Electrophoresis 1994, 15, 1273-1275.
28. Bumgarner, J. G., Khaledi, M. G., “Mixed micelles of short chain alkyl surfactants and bile salts in electrokinetic chromatography:. Enhanced separation of corticosteroids,” J. Chromatogr. A 1996, 738, 275-283.
29. Fuguet, E., Rafols, C., Bosch, E., Abraham, M. H., Roses, M., “Selectivity of single, mixed, and modified pseudostationary phases in electrokinetic chromatography,” Electrophoresis 2006, 27, 1900-1914.
30. Khaledi, M. G., Bumgarner, J. G., Hadjmohammadi, M., “Characterization of mixed micellar pseudostationary phases in electrokinetic chromatography using linear solvation energy relationships,” J. Chromatogr. A 1998, 802, 35-47.
31. Altria, K. D., “Background theory and applications of microemulsion electrokinetic chromatography,” J. Chromatogr. A 2000, 892, 171-186.
32. Gabel-Jensen, C., Hansen, S. H., Pedersen-Bjergaard, S., “Separation of neutral compounds by microemulsion electrokinetic chromatography: Fundamental studies on selectivity,” Electrophoresis 2001, 22, 1330-1336.
33. Yang, H., Ding, Y., Cao, J., Li, P., “Twenty-one years of microemulsion electrokinetic chromatography (1991-2012): A powerful analytical tool,” Electrophoresis 2013, 34, 1273-1294.
34. Palmer, C. P.,”Polymeric Pseudostationary Phases and Dendrimers” in: Pyell, U. (Ed.), Electrokinetic Chromatography. Theory, Instrumentation and Applications, John Wiley and Sons Ltd., West Sussex, England 2006.
35. Palmer, C. P., “Recent progress in the use of ionic polymers as pseudostationary phases for EKC,” Electrophoresis 2007, 28, 164-173.
36. Palmer, C. P., “Recent progress in the use of ionic polymers as pseudostationary phases for electrokinetic chromatography,” Electrophoresis 2009, 30, 163-168.
37. Palmer, C. P., Khaled, M. Y., Mcnair, H. M., “A Monomolecular Pseudostationary Phase for Micellar Electrokinetic Capillary Chromatography,” J. High Resol. Chromatogr. 1992, 15, 756-762.
38. Palmer, C. P., Mcnair, H. M., “Novel Pseudostationary Phase for Micellar Electrokinetic Capillary Chromatography,” J. Microcol. Sep. 1992, 4, 509-514.
39. Palmer, C. P., Terabe, S., “Micelle Polymers as Pseudostationary Phases in Mekc: Chromatographic Performance and Chemical Selectivity,” Anal. Chem. 1997, 69, 1852-1860.
40. Duan, A. H., Xie, S. M., Yuan, L. M., “Nanoparticles as stationary and pseudo-stationary phases in chromatographic and electrochromatographic separations,” TrAC – Trends in Anal. Chem. 2011, 30, 484-491.
41. Göttlicher, B., Bächmann, K., “Application of particles as pseudo-stationary phases in electrokinetic chromatography,” J. Chromatogr. A 1997, 780, 63-73.
42. Nilsson, C., Birnbaum, S., Nilsson, S., “Use of nanoparticles in capillary and microchip electrochromatography,” J. Chromatogr. A 2007, 1168, 212-224.
43. Nilsson, C., Viberg, P., Spégel, P., Jömtén-Karlsson, M., Petersson, P., Nilsson, S., “Nanoparticle-based continuous full filling capillary electrochromatography/ electrospray ionization-mass spectrometry for separation of neutral compounds,” Anal. Chem. 2006, 78, 6088-6095.
44. Palmer, C. P., Hilder, E. F., Quirino, J. P., Haddad, P. R., “Electrokinetic chromatography and mass spectrometric detection using latex nanoparticles as a pseudostationary phase,” Anal. Chem. 2010, 82, 4046-4054.
45. Palmer, C. P., Keefer, A., Hilder, E. F., Haddad, P. R., “Retention Behavior and Selectivity of a Latex Nanoparticle Pseudostationary Phase for Electrokinetic Chromatography,” Electrophoresis 2011, 32, 588-594.
46. Viberg, P., Jornten-Karlsson, M., Petersson, P., Spegel, P., Nilsson, S., “Nanoparticles as pseudostationary phase in capillary electrochromatography/ESI-MS,” Anal. Chem. 2002, 74, 4595-4601.
47. Fu, C., Khaledi, M. G., “Selectivity patterns in micellar electrokinetic chromatography. Characterization of fluorinated and aliphatic alcohol modifiers by micellar selectivity triangle,” J. Chromatogr. A 2009, 1216, 1901-1907.
48. Fu, C., Khaledi, M. G., “Micellar selectivity triangle for classification of chemical selectivity in electrokinetic chromatography,” J. Chromatogr. A 2009, 1216, 1891-1900.
49. Fu, C., Khaledi, M. G., “Characterization and classification of pseudo-stationary phases in micellar electrokinetic chromatography using chemometric methods,” Anal. Chem. 2014, 86, 2371-2379.
50. Foley, J. P., “Optimization of micellar electrokinetic chromatography,” Anal. Chem. 1990, 62, 1302-1308.
51. Birdi, K. S., Backlund, S., Sørensen, K., Krag, T., Dalsager, S., “The effect of additives on the micellar systems as studied by membrane osmometry,” J.Colloid Interf. Sci. 1978, 66, 118-123.
52. Pan, A., Naskar, B., Prameela, G. K. S., Kumar, B. V. N. P., Mandal, A. B., Bhattacharya, S. C., Moulik, S. P., “Amphiphile Behavior in Mixed Solvent Media I: Self-Aggregation and Ion Association of Sodium Dodecylsulfate in 1,4-Dioxane–Water and Methanol–Water Media,” Langmuir 2012, 28, 13830-13843.
53. Terabe, S., Miyashita, Y., Shibata, O., Barnhart, E. R., Alexander, L. R., Patterson, D. G., Karger, B. L., Hosoya, K., Tanaka, N., “Separation of highly hydrophobic compounds by cyclodextrin-modified micellar electrokinetic chromatography,” J. Chromatogr. A 1990, 516, 23-31.
54. Cole, R. O., Sepaniak, M. J., Hinze, W. L., Gorse, J., Oldiges, K., “Bile salt surfactants in micellar electrokinetic capillary chromatography. Application to hydrophobic molecule separations,” J. Chromatogr. A 1991, 557, 113-123.
55. Pyell, U., “Determination and regulation of the migration window in electrokinetic chromatography,” J. Chromatogr. A 2004, 1037, 479-490.
56. Dworschak, A., Pyell, U., “Widening of the Elution Window in Micellar Electrokinetic Chromatography With Cationic Surfactants: I. Selection of Surfactant ; Variation of Ph and Addition of Organic Modifiers or Inorganic Metal Salts,” J. Chromatogr. A 1999, 848, 387-400.
57. Lu, W., Poon, G. K., Carmichael, P. L., Cole, R. B., “Analysis of Tamoxifen and Its Metabolites by Online Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry Employing Nonaqueous Media Containing Surfactants,” Anal. Chem. 1996, 68, 668-674.
58. Ozaki, H., Terabe, S., “On-Line Micellar Electrokinetic Chromatography Mass Spectrometry With a High-Molecular-Mass Surfactant,” J. Chromatogr. A 1998, 794, 317-325.
59. Rundlett, K. L., Armstrong, D. W., “Mechanism of Signal Suppression by an Ionic Surfactants in Capillary Electrophoresis Electrospray Ionization Mass Spectrometry,” Anal. Chem. 1996, 68, 3493-3497.
60. Somsen, G. W., Mol, R., de Jong, G. J., “On-line micellar electrokinetic chromatography-mass spectrometry: feasibility of direct introduction of non-volatile buffer and surfactant into the electrospray interface,” J. Chromatogr. A 2003, 1000, 953-961.
61. Somsen, G. W., Mol, R., Jong, G. J., “Micellar electrokinetic chromatography-mass spectrometry: combining the supposedly incompatible,” Anal. Bioanal. Chem. 2006, 384, 31-33.
62. Abraham, M. H., “Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes,” Chem. Soc. Rev. 1993, 22, 73-83.
63. Abraham, M. H., Chadha, H. S., Whiting, G. S., Mitchell, R. C., “Hydrogen Bonding. 32. An Analysis of Water-Octanol and Water-Alkane Partitioning and the.DELTA.log P Parameter of Seiler,” J. Pharm. Sci. 1994, 83, 1085-1100.
64. Abraham, M. H., Treiner, C., Roses, M., Rafols, C., Ishihama, Y., “Linear free energy relationship analysis of microemulsion electrokinetic chromatographic determination of lipophilicity,” J. Chromatogr. A 1996, 752, 243-249.
65. Abraham, M. H., Zissimos, A. M., Huddleston, J. G., Willauer, H. D., Rogers, R. D., Acree, W. E., Jr, “Some Novel Liquid Partitioning Systems: Water-Ionic Liquids and Aqueous Biphasic Systems,” Ind. Eng. Chem. Res. 2003, 42, 413-418.
66. Dobashi, A., Ono, T., Hara, S., Yamaguchi, J., “Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography [4],” Anal. Chem. 1989, 61, 1984-1986.
67. Dobashi, A., Ono, T., Hara, S., Yamaguchi, J., “Enantioselective hydrophobic entanglement of enantiomeric solutes with chiral functionalized micelles by electrokinetic chromatography,” J. Chromatogr. A 1989, 480, 413-420.
68. Mazzeo, J. R., Grover, E. R., Swartz, M. E., Petersen, J. S., “Novel chiral surfactant for the separation of enantiomers by micellar electrokinetic capillary chromatography,” J. Chromatogr. A 1994, 680, 125-135. Scientia Chromatographica 2015; 7(1):7-2923
69. Terabe, S., Shibata, M., Miyashita, Y., “chiral separation by electronkinetic chromatography while bile salt micelles,” J. Chromatogr. A 1989, 480, 403-411.
70. Yang, S., Khaledi, M. G., “Chemical Selectivity in Micellar Electrokinetic Chromatography: Characterization of Solute-Micelle Interactions for Classification of Surfactants,” Anal. Chem. 1995, 67, 499-510.
71. Poole, S. K., Poole, C. F., “Characterization of surfactant selectivity in micellar electrokinetic chromatography,” Analyst 1997, 122, 267-274.
72. Ishihama, Y., Katayama, H., Asakawa, N., “Surfactants usable for electrospray ionization mass spectrometry,” Anal. Biochem. 2000, 287, 45-54.
73. Petersson, P., Jornten-Karlsson, M., Stalebro, M., “Direct coupling of micellar electrokinetic chromatography to mass spectrometry using a volatile buffer system based on perfluorooctanoic acid and ammonia,” Electrophoresis 2003, 24, 999-1007.
74. Fuguet, E., Rafols, C., Bosch, E., Abraham, M. H., Roses, M., “Solute-solvent interactions in micellar electrokinetic chromatography III. Characterization of the selectivity of micellar electrokinetic chromatography systems,” J. Chromatogr. A 2002, 942, 237-248.
75. Terabe, S., Ozaki, H., Otsuka, K., Ando, T., “Electrokinetic chromatography with 2-O-carboxymethyl-β-cyclodextrin as a moving “stationary” phase,” J. Chromatogr. A 1985, 332, 211-217.
76. Nishi, H., Matsuo, M., “Separation of corticosteroids and aromatic hydrocarbons by cyclodextrin-modified micellar electrokinetic chromatography,” J. Liq. Chromatogr. 1991, 14, 973-986.
77. Terabe, S., Miyashita, Y., Ishihama, Y., Shibata, O., “Cyclodextrin-modified micellar electrokinetic chromatography: Separation of hydrophobic and enantiomeric compounds,” J. Chromatogr. A 1993, 636, 47-55.
78. Yik, Y. F., Ong, C. P., Khoo, S. B., Lee, H. K., Li, S. F. Y., “Separation of polycyclic aromatic hydrocarbons by micellar electrokinetic chromatography with cyclodextrins as modifiers,” J. Chromatogr. A 1992, 589, 333-338.
79. Lin, M., Wu, N., Barker, G. E., Sun, P., Huie, C. W., Hartwick, R. A., “Enantiomeric separation by cyclodextrin-modified micellar electrokinetic chromatography using bile salt,” J. Liq. Chromatogr.1993, 16, 3667-3674.
80. Nishi, H., Fukuyama, T., Terabe, S., “Chiral separation by cyclodextrin-modified micellar electrokinetic chromatography,” J. Chromatogr. A 1991, 553, 503-516.
81. Okafo, G. N., Bintz, C., Clarke, S. E., Camilleri, P., “Micellar electrokinetic capillary chromatography in a mixture of taurodeoxycholic acid and β-cyclodextrin,” J. Chem. Soc. Chem. Comm. 1992, 1189-1192.
82. Rawjee, Y. Y., Staerk, D. U., Vigh, G., “Capillary electrophoretic chiral separations with cyclodextrin additives. I. acids: Chiral selectivity as a function of pH and the concentration of β-cyclodextrin for fenoprofen and ibuprofen,” J. Chromatogr. A 1993, 635, 291-306.
83. Rawjee, Y. Y., Williams, R. L., Vigh, G., “Capillary electrophoretic chiral separations using β-cyclodextrin as resolving agent. II. Bases: Chiral selectivity as a function of pH and the concentration of β-cyclodextrin,” J. Chromatogr. A 1993, 652, 233-245.
84. Rawjee, Y. Y., Williams, R. L., Vigh, G., “Capillary electrophoretic chiral separations using cyclodextrin additives. III. Peak resolution surfaces for ibuprofen and homatropine as a function of the pH and the concentration of β-cyclodextrin,” J. Chromatogr. A 1994, 680, 599-607.
85. Bryan Vincent, J., Sokolowski, A. D., Nguyen, T. V., Vigh, G., “A Family of Single-Isomer Chiral Resolving Agents for Capillary Electrophoresis. 1. Heptakis(2,3-diacetyl-6-sulfato)-β-cyclodextrin,” Anal. Chem. 1997, 69, 4226-4233.
86. Cai, H., Nguyen, T. V., Vigh, G., “A Family of Single-Isomer Chiral Resolving Agents for Capillary Electrophoresis. 3. Heptakis(2,3-dimethyl-6-sulfato)-β-cyclodextrin,” Anal. Chem. 1998, 70, 580-589.
87. Vigh, G., Vincent, B., Cai, H., Nguyen, T., Maynard, D., Zhou, W., “Recent developments in the CE separation of enantiomers using single-isomer chiral resolving agents,” J. Pharm. Belg. 1998, 53, 126.
88. Zhu, W., Vigh, G., “A family of single-isomer, sulfated γ-cyclodextrin chiral resolving agents for capillary electrophoresis. 1. Octakis(2,3-diacetyl-6-sulfato)-γ- cyclodextrin,” Anal. Chem. 2000, 72, 310-317.
89. Müllerová, L., Dubský, P., Gaš, B., “Twenty years of development of dual and multi-selector models in capillary electrophoresis: A review,” Electrophoresis 2014, 35, 2688-2700.
90. Hong, M., Weekley, B., Grieb, S. J., Foley, J. P., “Electrokinetic chromatography using thermodynamically stable vesicles and mixed micelles formed from oppositely charged surfactants,” Anal. Chem. 1998, 70, 1394-1403.
91. Pascoe, R. J., Foley, J. P., “Characterization of surfactant and phospholipid vesicles for use as pseudostationary phases in electrokinetic chromatography,” Electrophoresis 2003, 24, 4227-4240.
92. Delgado-Zamarreño, M. M., Sánchez-Pérez, A., González Maza, I., Hernández-Méndez, J., “Micellar electrokinetic chromatography with bis(2-ethylhexyl)sodium sulfosuccinate vesicles: Determination of synthetic food antioxidants,” J. Chromatogr. A 2000, 871, 403-414.
93. Wiedmer, S. K., Holopainen, J. M., Mustakangas, P., Kinnunen, P. K. J., Riekkola, M.-L., “Liposomes as carriers in electrokinetic capillary chromatography,” Electrophoresis 2000, 21, 3191-3198.
94. Ruokonen, S.-K., Duša, F., Lokajová, J., Kilpeläinen, I., King, A. W. T., Wiedmer, S. K., “Effect of ionic liquids on the interaction between liposomes and common wastewater pollutants investigated by capillary electrophoresis,” J. Chromatogr. A. 2015, 1405, 178-87.
95. Burns, S. T., Agbodjan, A. A., Khaledi, M. G., “Characterization of solvation properties of lipid bilayer membranes in liposome electrokinetic chromatography,” J. Chromatogr. A 2002, 973, 167-176.
96. Burns, S. T., Khaledi, M. G., “Rapid determination of liposome-water partition coefficients (Klw) using Liposome Electrokinetic Chromatography (LEKC),” J. Pharm. Sci. 2002, 91, 1601-1612.
97. Carrozzino, J. M., Khaledi, M. G., “Interaction of basic drugs with lipid bilayers using liposome electrokinetic chromatography,” Pharm. Res. 2004, 21, 2327-2335.
98. Wiedmer, S. K., Kulovesi, P., Riekkola, M. L., “Liposome electrokinetic capillary chromatography in the study of analytephospholipid membrane interactions. Application to pesticides and related compounds,” J. Sep. Sci. 2008, 31, 2714-2721.
99. Wiedmer, S. K., Lokajová, J., “Capillary electromigration techniques for studying interactions between analytes and lipid dispersions,” J. Sep. Sci. 2013, 36, 37-51.
100. Palmer, C. P., “Polymeric and Polymer-Supported Pseudostationary Phases in Micellar Electrokinetic Chromatography: Performance and Selectivity,” Electrophoresis 2000, 21, 4054-4072.
101. Palmer, C. P., “Recent Progress in the Development, Characterization and Application of Polymeric Pseudo-Phases for Electrokinetic Chromatography,” Electrophoresis 2002, 23, 3993-4004.
102. Ozaki, H., Itou, N., Terabe, S., Takada, Y., Sakairi, M., Koizumi, H., “Micellar Electrokinetic Chromatography MassSpectrometry a High-Molecular-Mass Surfactant : Online Coupling With an Electrospray-Ionization Interface,” J. Chromatogr. A 1995, 716, 69-79.
103. Shamsi, S. A., “Micellar Electrokinetic Chromatography-Mass Spectrometry Using a Polymerized Chiral Surfactant,” Anal. Chem. 2001, 73, 5103-5108.
104. Peterson, D. S., Palmer, C. P., “Alkyl modified anionic siloxanes as pseudostationary phases for electrokinetic chromatography I. Synthesis and characterization,” J. Chromatogr. A 2001, 924, 103-110.
105. Peterson, D. S., Palmer, C. P., “Novel alkyl-modified anionic siloxanes as pseudostationary phases for electrokinetic chromatography: II. Selectivity studied by linear solvation energy relationships,” Electrophoresis 2001, 22, 3562-3566.
106. Peterson, D. S., Palmer, C. P., “Synthesis and characterization of novel anionic siloxane polymers as pseudostationary phases for electrokinetic chromatography,” Electrophoresis 2001, 22, 1314-1321.
107. Peterson, D. S., Palmer, C. P., “Novel alkyl-modified anionic siloxanes as pseudostationary phases for electrokinetic chromatography III. Performance in organic-modified buffers,” J. Chromatogr. A 2002, 959, 255-261.
108. Schulte, S., Palmer, C. P., “Alkyl-modified siloxanes as pseudostationary phases for electrokinetic chromatography,” Electrophoresis 2003, 24, 978-983.
109. Shi, W., Palmer, C. P., “Effect of pendent group structures on the chemical selectivity and performance of sulfonated copolymers as novel pseudophases in electrokinetic chromatography,” Electrophoresis 2002, 23, 1285-1295.
110. Shi, W., Peterson, D. S., Palmer, C. P., “Effect of pendant chain lengths and backbone functionalities on the chemical selectivity of sulfonated amphiphilic copolymers as pseudo-stationary phases in electrokinetic chromatography,” J. Chromatogr. A 2001, 924, 123-135.
111. Shi, W., Watson, C. J., Palmer, C. P., “Sulfonated Acrylamide Copolymers as Pseudo-Stationary Phases in Electrokinetic Chromatography,” J. Chromatogr. A 2001, 905, 281-290.
112. Shamsi, S. A., Palmer, C. P., Warner, I. M., “Molecular micelles: novel pseudostationary phases for CE,” Anal. Chem. 2001, 73, 140A-149A.
113. Akbay, C., Rizvi, S. A. A., Shamsi, S. A., “Simultaneous Enantioseparation and Tandem UV-MS Detection of Eight b-Blockers in Micellar Electrokinetic Chromatography Using a Chiral Molecular Micelle,” Anal. Chem. 2005, 77, 1672-1683.
114. Hyslop, J. S., Hall, L. M. G., Umansky, A. A., Palmer, C. P., “RAFT polyhmerized nanoparticles: Influences of shell and core chemistries on peformance for electrokintic chromatography,” Electrophoresis 2014, 35, 728-735.
115. Spegel, P., Viberg, P., Carlstedt, J., Petersson, P., Joernten-Karlsson, M., “Continuous full filling capillary electrochromatography: Nanoparticle synthesis and evaluation,” J. Chromatogr. A 2007, 1154, 379-385.
116. Priego-Capote, F., Ye, L., Shakil, S., Shamsi, S. A., Nilsson, S., “Monoclonal Behavior of Molecularly Imprinted Polymer Nanoparticles in Capillary Electrochromatography,” Anal. Chem. 2008, 80, 2881-2887.
117. Wang, Y., Sun, J., Liu, H., Liu, J., Zhang, L., Liu, K., He, Z., “Predicting skin permeability using liposome electrokinetic chromatography,” Analyst 2009, 134, 267-272.
118. Xian, D. L., Huang, K. L., Liu, S. Q., Xiao, J. Y., “Quantitative retention-activity relationship studies by liposome electrokinetic chromatography to predict skin permeability,” Chin. J. Chem. 2008, 26, 671-676.
119. Wang, Y., Sun, J., Liu, H., He, Z., “Rapidly profiling blood-brain barrier penetration with liposome EKC,” Electrophoresis 2007, 28, 2391-2395.
120. Xian, D., Huang, K., Liu, S., Xiao, J., “Liposome electrokinetic chromatography: An in vitro approach for predicting ecotoxicity,” Chromatographia 2008, 67, 407-412.
121. Wang, T., Feng, Y., Jin, X., Fan, X., Crommen, J., Jiang, Z., “Liposome electrokinetic chromatography based in vitro model for early screening of the drug-induced phospholipidosis risk,” J. Pharm. Biomed. Anal. 2014, 96, 263-271.
122. Ishihama, Y., Oda, Y., Asakawa, N., “A hydrophobicity scale based on the migration index from microemulsion electrokinetic chromatography of anionic solutes,” Anal. Chem. 1996, 68, 1028-1032.
123. Ishihama, Y., Oda, Y., Asakawa, N., “Hydrophobicity of Cationic Solutes Measured by Electrokinetic Chromatography with Cationic Microemulsions,” Anal. Chem. 1996, 68, 4281-4284.
124. Ishihama, Y., Oda, Y., Uchikawa, K., Asakawa, N., “Evaluation of solute hydrophobicity by microemulsion electrokinetic chromatography,” Anal. Chem. 1995, 67, 1588-1595.
125. Henchoz, Y., Romand, S., Schappler, J., Rudaz, S., Veuthey, J. L., Carrupt, P. A., “High-throughput log P determination by MEEKC coupled with UV and MS detections,” Electrophoresis 2010, 31, 952-964.
126. Jia, Z., Mei, L., Lin, F., Huang, S., Killion, R. B., “Screening of octanol-water partition coefficients for pharmaceuticals by pressure-assisted microemulsion electrokinetic chromatography,” J. Chromatogr. A 2003, 1007, 203-208.
127. Klotz, W. L., Schure, M. R., Foley, J. P., “Determination of octanol-water partition coefficients of pesticides by microemulsion electrokinetic chromatography,” J. Chromatogr. A 2001, 930, 145-154.
128. Øtergaard, J., Honore Hansen Steen, S., Larsen, C., Schou, C., Heegaard, N. H. H., “Determination of octanol-water partition coefficients for carbonate esters and other small organic molecules by microemulsion electrokinetic chromatography,” Electrophoresis 2003, 24, 1038-1046.
129. Poole, S. K., Durham, D., Kibbey, C., “Rapid method for estimating the octanol-water partition coefficient (log P(ow)) by microemulsion electrokinetic chromatography,” J. Chromatogr. B 2000, 745, 117-126.
130. Poole, S. K., Patel, S., Dehring, K., Workman, H., Dong, J., “Estimation of octanol-water partition coefficients for neutral and weakly acidic compounds by microemulsion electrokinetic chromatography using dynamically coated capillary columns,” Journ. Chromatogr. B 2003, 793, 265-274.
131. Tu, J., Halsall, H. B., Seliskar, C. J., Limbach, P. A., Arias, F., Wehmeyer, K. R., Heineman, W. R., “Estimation of log Pow values for neutral and basic compounds by microchip microemulsion electrokinetic chromatography with indirect fluorimetric detection (μMEEKC-IFD),” J. Pharm. Biomed. Anal. 2005, 38, 1-7.
132. Xia, Z., Jiang, X., Mu, X., Chen, H., “Improvement of microemulsion electrokinetic chromatography for measuring octanolwater partition coefficients,” Electrophoresis 2008, 29, 835-842.
133. Xia, Z., Yang, J., Li, L., Yang, F., Jiang, X., “Determination of octanol-water partition coefficients by MEEKC based on peakshift assay,” Chromatographia 2010, 72, 495-501.
134. Klotz, W. L., Schure, M. R., Foley, J. P., “Rapid estimation of octanol-water partition coefficients using synthesized vesicles in electrokinetic chromatography,” J. Chromatogr. A 2002, 962, 207-219.
135. Wan, H., Åhman, M., Holmén, A. G., “Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs,” J. Med. Chem. 2009, 52, 1693-1700.
136. Lin, C. E., Chen, M. J., Huang, H. C., Chen, H. W., “Capillary electrophoresis study on the micellization and critical micelle concentration of sodium dodecyl sulfate: Influence of solubilized solutes,” J. Chromatogr. A 2001, 924, 83-91.
137. Poole, S. K., Poole, C. F., “Quantitative structure-retention (property) relationships in micellar electrokinetic chromatography,” J. Chromatogr. A 2008, 1182, 1-24.
138. Davis, J. M., “Determination of micellar self-diffusion coefficients by micellar electrokinetic chromatography,” Analyst 1998, 123, 337-341.
139. Muijselaar, P. G., van Straten, M. A., Claessens, H. A., Cramers, C. A., “Determination of diffusion coefficients and separation numbers in micellar electrokinetic chromatography,” J. Chromatogr. A 1997, 766, 187-195.
140. Mol, R., Kragt, E., Jimidar, I., de Jong, G. J., Somsen, G. W., “Micellar electrokinetic chromatography-electrospray ionization mass spectrometry for the identification of drug impurities,” J. Chromatogr. B 2006, 843, 283-288.
141. Takada, Y., Sakairi, M., Koizumi, H., “Online combination of micellar electrokinetic chromatography and mass spectrometry using an electrospray-chemical ionization interface,” Rapid Commun. Mass Spectrom. 1995, 9, 488-490.
142. Varghese, J., Cole, R. B., “Cetyltrimethylammonium chloride as a surfactant buffer additive for reversed-polarity capillary electrophoresis-electrospray mass spectrometry,” J. Chromatogr. A 1993, 652, 369-376.
143. Muijselaar, P. G., Otsuka, K., Terabe, S., “On-Line Coupling of Partial-Filling Micellar Electrokinetic Chromatography With Mass Spectrometry,” J. Chromatogr. A 1998, 802, 3-15.
144. Nelson, W. M., Tang, Q., Harrata, A. K., Lee, C. S., “On-Line Partial Filling Micellar Electrokinetic Chromatography Electrospray Ionization Mass Spectrometry,” J. Chromatogr. A 1996, 749, 219-226.
145. Yang, L. Y., Harrata, A. K., Lee, C. S., “On-Line Micellar Electrokinetic Chromatography Electrospray Ionization Mass Spectrometry Using Anodically Migrating Micelles,” Anal. Chem. 1997, 69, 1820-1826.
146. Ozaki, H., “Studies on Micellar Electrokinetic Chromatography Using Polymer Surfactants and Its Combination With Mass Spectrometry,” Bunseki Kagaku 1999, 48, 1023-1024.
147. Lu, W. Z., Shamsi, S. A., Mccarley, T. D., Warner, I. M., “On-Line Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry Using a Polymerized Anionic Surfactant,” Electrophoresis 1998, 19, 2193-2199.
148. Rizvi, S. A. A., Zheng, J., Apkarian, R. P., Dublin, S. N., Shamsi, S. A., “Polymeric sulfated amino acid surfactants: A class of versatile chiral selectors for micellar electrokinetic chromatography (MEKC) and MEKC-MS,” Anal. Chem. 2007, 79, 879-898.
149. Wang, X., Hou, J., Jann, M., Hon, Y. Y., Shamsi, S. A., “Development of a chiral micellar electrokinetic chromatography-tandem mass spectrometry assay for simultaneous analysis of warfarin and hydroxywarfarin metabolites: Application to the analysis of patients serum samples,” J. Chromatogr. A 2013, 1271, 207-216.
150. Mol, R., de Jong, G. J., Somsen, G. W., “Atmospheric pressure photoionization for enhanced compatibility in on-line micellar electrokinetic chromatography-mass spectrometry,” Anal. Chem. 2005, 77, 5277-5282.
151. Mol, R., de Jong, G. J., Somsen, G. W., “Online capillary electrophoresis-mass spectrometry using dopant-assisted atmospheric pressure photoionization: Setup and system performance,” Electrophoresis 2005, 26, 146-154.
152. Aranas, A. T., Guidote, A. M., Jr., Quirino, J. P., “Sweeping and new on-line sample preconcentration techniques in capillary electrophoresis,” Anal. Bioanal. Chem. 2009, 394, 175-185.
153. Breadmore, M. C., “Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips,” Electrophoresis 2007, 28, 254-281.
154. Breadmore, M. C., Thabano, J. R. E., Dawod, M., Kazarian, A. A., Quirino, J. P., Guijt, R. M., “Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006-2008),” Electrophoresis 2009, 30, 230-248.
155. Kitagawa, F., Otsuka, K., “Recent applications of on-line sample preconcentration techniques in capillary electrophoresis,” J. Chromatogr. A 2014, 1335, 43-60.
156. Quirino, J. P., Terabe, S., “Online concentration of neutral analytes for micellar electrokinetic chromatography. II. Reversed electrode polarity stacking mode,” J. Chromatogr. A 1997, 791, 255-267.
157. Quirino, J. P., Terabe, S., “Online concentration of neutral analytes for micellar electrokinetic chromatography. I. Normal stacking mode,” J. Chromatogr. A 1997, 781, 119-128.
158. Quirino, J. P., Terabe, S., “Online Concentration of Neutral Analytes for Micellar Electrokinetic Chromatography. 5. FieldEnhanced Sample Injection with Reverse Migrating Micelles,” Anal. Chem. 1998, 70, 1893-1901.
159. Quirino, J. P., Otsuka, K., Terabe, S., “Online concentration of neutral analytes for micellar electrokinetic chromatography. VI. Stacking using reverse migrating micelles and a water plug,” J. Chromatogr. B 1998, 714, 29-38.
160. Quirino, J. P., Terabe, S., “Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography,” Science 1998, 282, 465-468.
161. Quirino, J. P., Terabe, S., “Online concentration of neutral analytes for micellar electrokinetic chromatography. 3. Stacking with reverse migrating micelles,” Anal. Chem. 1998, 70, 149-157.
162. Quirino, J. P., Terabe, S., “Sweeping with an enhanced electric field of neutral analyte zones in electrokinetic chromatography,” J. High Res. Chromatogr. 1999, 22, 367-372.
163. Quirino, J. P., Terabe, S., “Sweeping of Analyte Zones in Electrokinetic Chromatography,” Anal. Chem. 1999, 71, 1638-1644.
164. Palmer, J., Burgi, D. S., Landers, J. P., “Electrokinetic stacking injection of neutral analytes under continuous conductivity conditions,” Anal. Chem. 2002, 74, 632-638.
165. Palmer, J., Munro, N. J., Landers, J. P., “A universal concept for stacking neutral analytes in micellar capillary electrophoresis,” Anal. Chem. 1999, 71, 1679-1687.
166. Quirino, J. P., Terabe, S., “Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping,” Anal. Chem. 2000, 72, 1023-1030.
167. Sueyoshi, K., Kitagawa, F., Otsuka, K., “On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography,” Anal. Chem. 2008, 80, 1255-1262.
168. Breadmore, M. C., Quirino, J. P., Thormann, W., “Insight into the mechanism of transient trapping in micellar electrokinetic chromatography,” Electrophoresis 2011, 32, 542-549.
169. Quirino Joselito, P., Haddad Paul, R., “Online sample preconcentration in capillary electrophoresis using analyte focusing by micelle collapse,” Anal. Chem. 2008, 80, 6824-6829.
170. Quirino, J. P., “Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography,” J. Chromatogr. A 2008, 1214, 171-177.
171. Quirino, J. P., “Analyte focusing by micelle collapse in CZE: nanopreparation of neutrals,” Electrophoresis 2009, 30, 875-882.
172. Quirino, J. P., “Micelle to solvent stacking of organic cations in capillary zone electrophoresis with electrospray ionization mass spectrometry,” J. Chromatogr. A 2009, 1216, 294-299.
173. Quirino, J. P., Aranas, A. T., “Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate,” J. Chromatogr. A 2011, 1218, 7377-7383.
174. Quirino, J. P., Aranas, A. T., “Simultaneous electrokinetic and hydrodynamic injection with on-line sample concentration via micelle to solvent stacking in micellar electrokinetic chromatography,” Anal. Chim. Acta 2012, 733, 84-89.
175. Tubaon, R. M., Haddad, P. R., Quirino, J. P., “High-sensitivity analysis of anionic sulfonamides by capillary electrophoresis using a synergistic stacking approach,” J. Chromatogr. A 2014, 1349, 129-134.
176. Nishi, H., Terabe, S., “Micellar electrokinetic chromatography perspectives in drug analysis,” J. Chromatogr. A 1996, 735, 3-27.
177. Huie, C. W., “Recent applications of microemulsion electrokinetic chromatography,” Electrophoresis 2006, 27, 60-75.
178. Kašička, V., “Recent developments in capillary and microchip electroseparations of peptides (2011-2013),” Electrophoresis 2014, 35, 69-95.
179. Tubaon, R. M. S., Rabanes, H., Haddad, P. R., Quirino, J. P., “Capillary electrophoresis of natural products: 2011-2012,” Electrophoresis 2014, 35, 190-204.
180. Štěpánová, S., Kašička, V., “Determination of impurities and counterions of pharmaceuticals by capillary electromigration methods,” J. Sep. Sci. 2014, 37, 2039-2055.
181. Net, S., Delmont, A., Sempéré, R., Paluselli, A., Ouddane, B., “Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review,” Sci. Total Environ. 2015, 515-516, 162-180.
182. Sieradzka, E., Witt, K., Milnerowicz, H., “The application of capillary electrophoresis techniques in toxicological analysis,” Biomed. Chromatogr. 2014, 28, 1507-1513.
183. Xu, X., Ni, X., Cao, Y., Zhuo, X., Yang, X., Cao, G., “Amphiphilic polymeric micelle as pseudostationary phase in electrokinetic chromatography for analysis of eight corticosteroids in cosmetics,” Electrophoresis 2014, 35, 827-835.
184. D’Orazio, G., Asensio-Ramos, M., Hernández-Borges, J., Rodríguez-Delgado, M. A., Fanali, S., “Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt,” Electrophoresis 2015, 36, 615-625.
185. Hsiao, W. Y., Jiang, S. J., Feng, C. H., Wang, S. W., Chen, Y. L., “Determining ultraviolet absorbents in sunscreen products by combining direct injection with micelle collapse on-line preconcentration capillary electrophoresis,” J. Chromatogr. A 2015, 1383, 175-181.
186. Bastos, C. A., Gomes, C. R. B., De Souza, M. V. N., De Oliveira, M. A. L., “Optimization of an electrolyte system for the simultaneous separation of nelfinavir mesylate and two impurities by micellar electrokinetic chromatography,” J. Brazil. Chem. Soc. 2015, 26, 887-898.